Document Exchange
Protocol 2 (DEP2)

<info@i ght conp. conp
Petr Pytelka <pyt el ka@i ght conp. cz>
Karel Zacek <zacek@ i ght conp. cz>

Document Exchange Protocol 2 (DEP2)
by , Petr Pytelka, and Karel Za¢ek
Copyright © 2004-2009 LightComp v.o0.s.

Table of Contents

L. INErOAUCEION Lo 1
2 O o= o =1 PP 2
1. Changes 2006-04-25 ..o e 2

2. Changes 2006-12-18iiiiiiiiiiiiiiii i 2

3. Changes 2007-03-28uuiiiiiiiiieiiiie i 2

4. Changes 2007-07-26cceuuuiiieiiiiiiie ittt e e e e et e e et e e e 2

5. Changes 2007-10-02uuiiiiiiiiiiiiiiie e e e e aaaaa 2

6. Changes 2007-10-09iiiiiiiii i 2

7. Changes 2007-10-18o.iiiiiiiiiiiiiie e 2

8. Changes 2007-10-22uuuiiiiiiiii e e 2

9. Changes 2007-L11-07 ..oouuiiiiiiiiii et e e e eaaa e e aaaaas 2

10. Changes 2008-06-24couiiiiiiiiii e 2

11. Changes 2009-02-17 ..ot e 3

12. Changes 2009-07-14 ...t 3

13, Changes 2009-07-21 ..ot 3

14. Changes 2009-00-14 ... 3

3. BaSIC SIIUCTUIE ot e 4
4. FramE TYPE D it 5
1. MethOd RESPONSE ...iiiiiiieiiiii e e e e e 5

2. HEIIO o 5

3. AUENOTIZAtION oo 6

3.1, AUENOIIZE o 7

3.2, AUENOTIZE2 oove i 7

4. ConneCtion Sate ... 8

T O o 1= ot PSP 8

B. DOCUMBNTS 1ottiiiii ittt e e 8

6.1. Structure DOCUMENT ... 8

6.2. PUSh DOCUMENT ... e e 10

6.3, Gl DOCUMENT it 10

6.4, Save DOCUMENE ... 11

6.5. RemoVve DOCUMENT . .ovviiiiii s 13

7 1 = SRR 13

7.1 REQUESLE FIle .ot 13

7.2. Failed File REQUESE ..uuiiiiii e 14

7.3. Configuration REQUESEcoiiiiiii i 14

7.4. Configuration Request 2 (update configuration)cccooeeeiiiiiiiniiinnnnnn, 14

7.5. Failed Config REQUESTiiiiiii e 15

8. TASKS ot 15

8.1, LISt Of TaSKS .uvuiiiiiiii i 15

8.2. TaSK REQUESTvviiiiiiii i 15

S oo =] =P 16

LS A O o T= o o] o = PR 16

9.2, ClOSE FOIAEL .oviiiii i 16

9.3, NOLIfICAtiONS ... 16

9.4, ReName FOIAET ...uuiiiii i 17

9.5. Add Document to FOldercoooiiiiiiiiii e 17

9.6, MOVE LM oviiiiiiii 17

9.7. REMOVE FOIART ...t 17

O TR B 1o] = ot S 18

D FraME TP L i 19
L. File ALEMDULES .o 19

B. FramM e Ty PO 2 ittt 20
7. TESEING PACKEL ..ovi i 21
SO o= 1] UL U] o] o Lo o P 22
O =1 110]] =TSP 22

Document Exchange Protocol 2 (DEP2)

9. Example of commMUNICAtIONooiiiiiiiiii e
10. IMPIEMENLALION .ivieiiiii e

Chapter 1. Introduction

This is specification of Document Exchange Protocol version 2 used in products Document
Server, Tahiti and others. Protocol was introduce in year 2004 and undergo several
modifications. There is list of changes in following chapter. This specification is based on the
version from year 2006 (older changes are not tracked in this document).

Original specification was written in Czech Language and was converted to English in 2008.
All future versions will be written primarly in English.

Chapter 2. Changes
1. Changes 2006-04-25

* new parameteri nt stat e in Section 6.3, “Get Document”

2. Changes 2006-12-18

* new method get Tasks
* new net hod request Task
* new et hod di sconnect

e extensi on of errorRecei vedDocument

3. Changes 2007-03-28

* changed return value for getDocument

4. Changes 2007-07-26

* new object Tahiti.System.Message

5. Changes 2007-10-02

* new API for folders: openFolder, closeFolder, setFolder, updateltem

6. Changes 2007-10-09

* new mime-type Tahiti/Attrs+Bin for method pushDocument

* structure description of frame for mime-type Tahiti/Attrs+Bin

7. Changes 2007-10-18

* new methods removeFolder, deleteDocument, renameltem, moveltem
* removed method set Fol der

* changes in folder API: openFolder, closeFolder, updateltem

8. Changes 2007-10-22

* new channel base communication Chapter 8, Channel support

9. Changes 2007-11-07

* new method Section 9.5, “Add Document to Folder”

* improved description of Section 9.6, “Move Item”

10. Changes 2008-06-24

* New method Section 7.2, “Failed File Request”

Changes

11. Changes 2009-02-17

* New method Section 2, “Hello”

12. Changes 2009-07-14

* New method Section 7.4, “Configuration Request 2 (update configuration)”

13. Changes 2009-07-21

* New method Section 3.2, “authorize2”

14. Changes 2009-09-14

* New method Section 6.4.1.2, “errorStoreDocument”
* SaveDocument structure extension Example 4.2, “SaveDocument structure definition”

 Application specific objects description moved to documentation related to application.

Chapter 3. Basic Structure

Protocol is based on protocol TCP. It is possible to use raw TCP packets or to use SSL for
data encryption. Transferred data are organized in the frames. Frame is base unit for higher
protocol layers. Each frame can be used to transfer data file, method call, testing packet etc.

Basic structure of the frame is on following picture:

0123 4567 8901 234...........
M3 D FRTP FRSZ FROT.

END 4 bytes

Table 3.1. Structure of the Frame

Item Size Description

MGID 4 Frame Identifier (magic id), expected value
OxE1 0x87 0x05 0xA3

FRTP 4 Frame type, number

FRSZ 4 Size of data in the frame (number of bytes)

FRDT defined in FRSZ Frame data, size is defined in FRSZ

FRCS 4 Checksum of the frame, includes
MGID,FRTP,FRSZ,FRDT
This is not currently used.

Protocol is initialized in 3 steps:

» Connected - waiting for Hello packet

* Introduced - after hello packet and waiting for authorization

e Authorized

Protocol have to be in Authorized to be able to transfer documents (Section 3,
“Authorization”). When protocol is authorized there are no other required steps. However
transfered document or file has its own transfer states.

Numeric values (MGID, FRTP, FRSZ, ...) are transffered as LittleEndian (typicaly used on x86).

Note

Protocol implementation can limit maximal size of the frame (FRSZ). We recommend
to limit frame size for security reasons.

Chapter 4. Frame Type 0

Frame type 0 is used for generic remote procedure call - RPC. This method call is based on
XML-RPC (s. http://www.xmlrpc.com/spec). There is one xml file inside such frame which

contains serialized procedure call.

This section contains description of various method which should be implemented. Most of
them can be implemented by server and client, some of them only by one side. Method

specification is written in pseudo "C" notation.

Every method call contains at least one parameter "ticker" - string. This parameter contains
unigue method call identification. Such identification can be used to pair together request
and response. Every response have to also contain "ticker". Protocol is asynchronous and it

is possible to send several independent requests at once.

Example 4.1. Example of method call in XMLRPC

<?xm version="1.0"?>
<met hodCal | >
<met hodName>aut hori ze</ net hodNane>
<par ans>
<par anp
<val ue><string>ticker</string></val ue>
</ par an®
<par anp
<val ue><stri ng>user </ stri ng></val ue>
</ par an
<par anp
<val ue><stri ng>passwor d</ stri ng></val ue>
</ par anp
</ par ans>
</ met hodCal | >

1. Method Response

Method response is standard response as defined in XML-RPC. Each response has to contain
as first parameter "ticker" which has to have same value as "ticker" send by caller. Example

of metho response:

<?xm version="1.0""?>
<met hodResponse>
<par ans>
<par anp
<val ue><string>ti cker</string></val ue>
</ par an®
<par anp
<val ue><i 4>130</ i 4></ val ue>
</ par anp
</ par ans>
</ met hodResponse>

2. Hello

First step is to introduce client to the server. There is method called hel | o.

http://www.xmlrpc.com/spec

Frame Type 0

[l Array of

/1 Name

b
b
b

Struct Hell oData {
/1 Application name
string systemNane;
/1 Application version
string systenVersion,

array options {
struct Option {

string nane;
/1 Val ue of option
string val ue;

supported options

of option

Hel | oData hello(string ticker, HelloData data);

Table 4.1. hello, parameters

Parameter

Description

data

structure describing client

Returns informations about server and its protocol implementation.

Note

For compatibility with older clients server should be able to communicate without
hel | o call. Older client will start communication with method aut hori ze.

List of options:

REQUEST_TASKLIST

FOLDERS

AUTHORIZE2

STOREDOCUMENT

3. Authorization

This is server extension. Server should send it to the
client if supports method request TaskLi st. Value
have to be 1. If server does not support this extension
option is not sent or value is set to 0.

This extension requires support on server and client.
Both sides have to be notified about folder support. If
side does not support this extension option is not sent
or value is set to 0.

This is protocol extension. Server should send it to the
client if supports method aut hori ze2. Value has to be
1. If server does not support this extension option is
not sent or value is set to 0. Client can use method
aut hori ze2 only when it is supported by server.

Store document extension requires support on server
and client. Both sides has to be notified about
STOREDOCUMENT support. Default value is 0. Value
has to be set to 1 when server or client want to use
error St oreDocunent notification or send extended
error messages in SaveDocument structure.

Next step to establish a connection is to authorized client. This can be done by calling method
aut hori ze oraut hori ze2.

Frame Type 0

3.1. authorize

Simple authorization by username and plaintext password.

int authorize(string ticker, string user, string password);

Table 4.2. authorize, parameters

Parameter Description
user user name
password password

Return value is number. List of error codes is in the following table

Table 4.3. authorize, List of Error Codes

Error Code Description

0 authorized

1 wrong name or password

2 other error in login

3 rejected by server (user with same user and password is already
connected from another computer)

3.2. authorize2

Extended authorization. Authorize user by username and password encrypted by selected
method. (Compatibility notice AUTHORIZE2)

Aut hori zeResponse authorize2(string ticker, string nethod, string
user, string password);

Table 4.4. authorize parameters

Parameter Description

method authentication method (method of password encryption)
user user name

password password

Table 4.5. authentication methods

Method

Description

plain

plain text password

external-token

external token (send token provided by external application as

password)

Return value is structure containing error code and error description. Set errorCode to 0
when authorization process was successfull.

/* Aut hori zeResponse description */
struct Aut hori zeResponse {
[* error
i nt errorCode;
[* string containing error description nessage */
string errorDescription;

code 0-OK, >0 - fail*/

Frame Type 0

4. Connection State

Method set St at e allows to change connection state. Directly after authorization only one
way communication is allowed (client to server). Server can send message to the client only

when connection is in state '1' (default state after connection is '0').

void setState(string ticker, int iNewState);

Table 4.6. Set State, possible values

Value Description

0 default state, method like pushObject and pushDocument are not
allowed

1 allow to receive objects, documents, ...

5. Objects

Protocol has API for object transfer. Objects are quite generic mechanism. It is possible to
use them for Client to Server and also for Server to Client communication. Each object has

a type and set of attributes.

/* Object description /
Struct Object {
/* Cbject type */
string type;
/* Array of object attributes */
array attributes {
[* One attribute */
struct Attribute {
[* Attribute name */
string nane;
[* Attribute value */
string val ue;
Ik
Ik
Ik

Object is send using method pushObj ect .

voi d pushQbj ect (ticker, Object);

Method will send object. There is no return value for this method. Value can be returned by

another object send in oposite direction.

6. Documents

Document is collection of pages and attributes. Protocol allows to transfer such documents.

6.1. Structure Document

Structure Docunent is usually used to send/receive document.

[* Document description */

Struct Docunent {

/* Uni que docunent identifacator */
string docunentld;

Frame Type 0

/* Docunment version. Every docunent
* can have nobre versions. */
string version;

/* Docunent version. This is identification
* of subversion on server side. Cient can
* safely ignore this value and have to just
*

send it back to server. */
string server Version;

[* Docunment type. Document type define which
* attributes are valid for docunment, howto
* di spl ay docunent and organi ze in | ogica
* structure. Every docunent have to have
* valid type. */

string type;

/* Docurent nodification

* 0 — docunent is not nodified

* 1 — docunent attributes are nodified */
int nodified;

/* Docurment attributes. Array of docunent

* attributes. Used attributes depens on docunent type */
array attributes {

[* Structure describes one attribute */

struct Attribute {

[* Attribute name */

string nane;

[* Attribute val ue */
string val ue;
b
b

/* Array of files, pages. */
array files {
[* Structure describing one file, page */
struct File {
/* Unique file (page) identifacator */
string ident;
[* File mne-type. */
string m neType;
/* Page i nportance.
* 0 — page is not inportant
* 1 — page is inportant */
int inportant;
/* Page nodification
* 0 — page is not nodified
* 1 — page attributes are nodified
* 2 — page data nodified
* 3 — page attributes and data nodified */
int nodified;
/* Page nunmber */
i nt pageNunber;
/* Page notes or comrents. */
string note;
[* Original filenane. */
string origNane;

Frame Type 0

/* Keys for page decryption/encryption. */
string keys;
/* Page signature. */
string signature;
b
b
b

6.2. Push Document
Document can be send from server to client using method pushDocunent .
voi d pushDocunent (string ticker, Docunent docunent, int state);

Client receiving this method call should display received document. Document can be in
read-only or with full access rights.

Table 4.7. pushDocument, parameters

Parameter Description
docunent Document
state Document state:

* 0 - document is read-only, no changes can be send back to the
server

* 1 - document can be modified - read/write access

Note

Pushed document can have pre-set attribute nodi fi ed and client should properly
interpret this attribute.

Note
It is possible to send page without defined mime-type. It is useful when mime-type
definition is obtain from the document store together with binary data. Such mime-

type is send together with data - look in section Chapter 5, Frame Type 1. Instead
of real type mime-type Tahi ti/ Attrs+Bi n have to be set.

6.3. Get Document

Client can request document using method get Docunent .

Get Docunent Response get Docunent (string ticker, string docld, string
version, int state);

Table 4.8. getDocument, parameters

Parameter Description

docld document identifier

version requested version, empty string means last version is requested
state request mode (0 - read-only, 1 - read/write)

Method will return structure Get Docunent Response. Requested document will be send
using method pushDocunent (Section 6.2, “Push Document”).

10

Frame Type 0

struct Get Docunent Response {
string ticker;
i nt ret Code;
string version;

}

Iltem r et Code is 0 if success. If method failed item r et Code will be greater then 0.

Item ver si on contains returned version (can be used to pair pushDocunent with this
request).

6.4. Save Document

Changed or new document is saved using method saveDocunent . Save operation is done
in three steps:

1. Send new/changed document to the server. Server have to allocate new identifiers and
send them to the client.

2. Send binary data files

3. Server have to send confirmation to the client about succesfull save opertaion.

Example 4.2. SaveDocument structure definition

[* Structure with newWy allocated
* |dentifiers, new version

*/

Struct SaveDocunent {

/* Document state:

* 0 — ok,

* 1 — | ock,

* 2 — docunent not up2date,

* 3 — error

* 4 - error with detail, error details are stored in version and server\Vers

int state;

/* Docurent identifier. This is unique
* docunent identifier. If new docunent
* | s saved server has to generate this
* jdentifier. Wien error is returned this field is enpty string*/
string docunentld;

/[* ldentifier of new docunment version.

* Each docunent version has uni que conbi nati on of
* docld and version.

*

* Error nmessage is stored here when state is 4. This nessage w || be shown
*/

string version;

/[* ldentifier of new server version.

* Server version is used by optimstic
* server | ocks.

*

* Detailed error nessage is stored here when state is 4. This pessage wil |
*/

string server Version;

/[* List of new ldentifiers for files. */
array<string> NewFil el dents;

b

11

Frame Type 0

Function for saving new document or new version:

SaveDocunent saveDocunent (string ticker, Docunent docunent);

Structure Document is parameter of the funcion. All requested items have to be correctly
filled in the structure. Document identifier is empty string if document is saved for first time
(new document). Server will return new document identifier.

Page identifiers are set only for existing unmodified pages. If page is modified or new
identifier is empty string.

Function will return list of new file identifiers and identifier of new document. Server
behavioure:

1. If document is requested from the server when newer version is saved last saved version
will be returned.

2. If client is trying to save new version of the document in parallel with other client lock
error have to be returned. Document is unlock on succesfull save operation, on error or
on time-out.

Compatibility notice: error state 4 is valid only when STOREDOCUMENT is set to 1.

Notification about succefull save operation:

void receivedDocurment(string ticker, string docunentld, string
docunent Ver si on) ;

Function has no return value and is used only for client notification.

6.4.1. Error notification

When error occur in the save operation client is notified with method
error Recei vedDocunent orerror St or eDocunent

6.4.1.1. errorReceivedDocument

voi d errorRecei vedDocunent (string ticker, string docunmentld, string
docunent Versi on, int reason);

Function has no return value and is used only for client notification. Parametr reason is used
to signal error code:

Table 4.9. errorReceivedDocument parameters

Parameters Description

documentld id of document

documentVersion version of document

reason reason of fail, error code

Table 4.10. reason, list of error codes

Error Code Description

1 lock

2 document not up2date
3 error

12

Frame Type 0

6.4.1.2. errorStoreDocument

void errorStoreDocunent(string ticker, string docunentld, string
version, int reason, string errorMessage, string errorDetail);

Function has no return value and is used only for client notification. Compatibility notice
STOREDOCUMENT

Table 4.11. errorReceivedDocument parameters

Parameters Description

documentld id of document

documentVersion version of document

reason reason of fail, error code

errorMessage error message to be presented in Ul. Valid only when reason is 4.
errorDetail detailed error message. Valid only when reason is 4.

Table 4.12. reason, list of error codes

Error Code Description

1 lock

2 document not up2date

3 error

4 error with description, parameters errorMessage and errorDetails are
used.

6.5. Remove Document

Existing document can be deleted using method del et eDocumnent . Function has parameter
document id as parameter.

i nt del eteDocunent (string ticker, string docunentld);

Function return 0 if success, 1 - document is locked, 2 - no permissions, 3 - other error

7. Files

Methods for file transfer.

7.1. Request File

File from server can be requested using method r equest Fi | e. When server receive such
request it has to send page to the client. File is send in frame type 1 (Chapter 5, Frame

Type 1).

void requestFile(string ticker, string fileld);

Table 4.13. pushDocument, parameters

Parameter Description
fileld File ID (Identifier). This ID have to be unique.

If file is not available server can send notification r equest Fi | eFai | ed (Section 7.2, “Failed
File Request”).

13

Frame Type 0

7.2. Failed File Request

If file request (Section 7.1, “Request File”) failed other side should send response
request Fi | eFai | ed. It is up to the caller to correctly display this error to the user.

void requestFileFailed(string ticker, string fileld, int errorCode,
string description);

Parameter fi | el d is unique file identifier.
Parameter er r or Code is error code.

Parameter descri pti on is error description.

7.3. Configuration Request

Configuration file can be requested using method request Confi g. Method will send
configuration file to the client. File is send as frame, type 2.

voi d request Config(string ticker, string fileld);

Table 4.14. requestConfig, parameters

Parameter Description

fileld configuration identifier

If file is not available server can send notification r equest Fi | eFai | ed (Section 7.5, “Failed
Config Request”).

7.4. Configuration Request 2 (update configuration)

Configuration file can be updated/requested using method requestConfig?2.

voi d requestConfig2(string ticker, string fileld, string hashType,
string fil eHash)

Method will send configuration file if hash of the configuration file on the server is
different from the hash of the current configuration file on the client. File is send as frame
type 2. Server have to send new configuration file or respond error Request Confi g.
Method err or Request Confi g is used to signal that current configuration is up-to-date
(error Code is set to 0) or to signal wrong request (er r or Code greater then 0).

Table 4.15. requestConfig2, parameters

Parameter Description
fileld configuration identifier
hashType Type of function used to compute hash of configuration file. The only

posible value is md5 for now.

fileHash Hash of configuration file stored on client.

Example 4.3. requestConfig2 example

request Confi g2("ticker", "config.zip", "nmd5",
"fcd66e666a77al8ca8d08c24f 40bc439");

Example requests file conf i g. zi p.

14

Frame Type 0

7.5. Failed Config Request

If configuration file does not exists or some other error occur server should send followinf
notification about error.

voi d errorRequest Config(string ticker, string fileld, int errorCode);

Table 4.16. errorRequestConfig, parameters

Parameter Description
fileld file identifier
errorCode error code

* 0 - no error, used in requestConfig2 to signal - configuration is up-
to-date.

* >0 - server specific error

8. Tasks

Methods for task management.

8.1. List of Tasks

Method r equest TaskLi st can be used to request list of tasks.

voi d request TaskLi st (string ticker, array<string> tasks);
Parameter t asks is list of currently available taks on the client.

Server can send list of tasks to the client using method pushTaskLi st .

voi d pushTaskList(string ticker, array<string> tasks, int flag);

Parametr t asks is list of tasks. Flag values are in the following table:

Table 4.17. flag, List of tasks

Flag Description

1 Full List - this is full list of all tasks. Client should drop old list and use
this one. This is also response on r equest TaskLi st

2 Additional List - tasks in the list should be added to the existing list

Total number of displayed tasks on the client can be limitied in the server configuration.
Tasks which client sent to the server in the requestTaskList and are not part of the response
are not valid anymore and client have to delete them from UL.

8.2. Task Request

Specific task can be requested using method r equest Task.
voi d request Task(string ticker, string taskld);

Method request task from the server. Way of sending task to the client is up to server
implementation, common way is to use method pushDocunent . Server can notify about
error in task request using method er r or Request Task.

voi d errorRequest Task(string ticker, string taskld);

15

Frame Type 0

9. Folders

Documents can be organized in the tree structure. There is APl to manipulate with this tree
(create, change, remove folders, add items ,..).

Folders are quite similiar to folders on file system. Each folder has name (only root folder is
empty string) and contains items. Item is document or another folder.

9.1. Open Folder

Methods allows to open folder. Client will receive for opened folder notifications about
changes. Notifications are send until the folder is closed (Section 9.2, “Close Folder”).

Fol der openFol der(string ticker, string folderld);

struct Fol der {
[/l Status of folder
/[l -3 - no perm ssion to open
/[l -2 - folder is |ocked
/[l -1 - folder not exists
/[l 0 - ok
i nt status;
/[l ltens in the folder
array itenms {
struct Folderltem {
[l Type
/!l 0 - folder, 1 - docunent
int type;
/[l ITtemid
/[l id of folder or id of docunent
string itenld;
/[l 1tem nane
string nane;

}_*,
};’

9.2. Close Folder

Close folder. Closing folder will also stop sending notifications about folder changes.

voi d cl oseFol der(string ticker, string folderld);

9.3. Notifications

Client (subscriber) will receive notification about folder changes. Following notifications are
available:

* new item in the folder
* item was removed from the folder (or item was moved to another folder)
* item was renamed

voi d updateltenm(string ticker, string folderld, int oper, Folderltem

item;

Function has three parameters: path, type of change, item with new data.

16

Frame Type 0

Possible types:
0 New item
1 Item was removed (is no longer in the folder)

2 Iltem was renamed (docld is same with the original)

9.4. Rename Folder

Folder or item can be renamed using method renaneltem

int renanelten(string ticker, string parentFolderld, string itenld,
string nane);

parentFolderld is id of the folder.

Return values: 0 - ok, 1 - wrong id, 2 - no permissions, 3 - other error

9.5. Add Document to Folder

New document is added to the tree calling bi ndDocunent . Document have to be saved
before it can be add to the tree.

i nt bindDocunent(string ticker, string parentFolderld, string nane,
string docld);

Return values: 0 - ok, 1 - wrong id, 2 - no permissions, 3 - other error

9.6. Move Item

It is possible to move any tree item to another folder. Method also allows to remove item
from the tree.

int novelten(string ticker, string parentFolderld, string itenld,
string newkol derl d);

par ent Fol der | d is id of the original folder

newFol der | d is id of new folder. If this parameter is empty string item will be removed
from the tree.

Return values: 0 - ok, 1 - wrong id, 2 - no permissions, 3 - other error

9.7. Remove Folder

It is possible to delete folder using method r enoveFol der .

int renoveFol der(string ticker, string folderld);
Only empty folder can be removed.

Possible return values:

* 0-0K

* 1 - wrong folder ID

* 2 -no permission

* 3 - other error.

17

Frame Type 0

10. Disconnect

Before disconnect it is possible to notify other side about this event calling method
di sconnect.

voi d di sconnect (int iReason, string description);

Reason of disconnect is in parameteri Reason. List of possible reasons is in the table bellow.

Table 4.18. disconnect, parameters

Constant Description

0 timeout

1 ukonceni aplikace

2 jiny dlvod, popis je uveden v proménné description

18

Chapter 5. Frame Type 1

Type 1 is used to tranfer data files. Each transfered file is identified by one identifier (IDDT).

FRDT=I DSZ | DDT BI DT

Table 5.1. Frame type 1, structure

Item Size Description
IDSZ 4 Size of Identifier
IDDT IDSZ Identifier (string)
BIDT FRSZ-4-IDSZ Binary data

It is possible to use special mime-type Tahi ti/ Attrs+Bi n for file. Such file contains not
only binary data but also XML file with some additional attributes. Embedded XML file
contains at least real mime-type of the data file. Structure of such file is bellow:

Bl DT=XM_SZ XM.DT BDT

Table 5.2. Frame, type 1, late attributes

Item Size Description
XMLSZ 4 Size of the XML file
XMLDT XMLSZ XML file
BDT FRSZ-4-IDSZ-4- Binary data

XMLSZ

1. File Attributes

Embedded XML file contains additional attributes for the File.

Example 5.1. Example of File Attributes

<?xm version="1.0"7?>
<Attri butes>

<Attribute name="Page. m metype" val ue="image/tiff"/>
</Attributes>

Tag Attri but e contains name and value of the attribute. Available attributes are in the

following table:

Table 5.3. Additional file attributes

Attribute

Description

Page.mimetype

Mime-type of page

Page.origName

Original page name

Page.creationtime

Time of page creation

Page.importance

Page importance (0]1)

19

Chapter 6. Frame Type 2

Type 2 is used to transfer configuration files. Configuration file request is described in section
Section 7.3, “Configuration Request”. Schema of data blocks with configuration file:.

FRDT=I DSZ | DDT BI DT

Table 6.1. Description of Frame, type 2

Item Size Description

IDSZ 4 Size of the identifier

IDDT IDSZ Configuration File Identifier
BIDT FRSZ-4-IDSZ Binary data of transferred file.

20

Chapter 7. Testing packet

There is testing packet which allows to test connection state. Packet is send by one side and
ignored by receiver. Both sides can send this packets.

0123 4 bytes MA D

MGID is packet Identifier: 0xD0O 0x87 0x05 0xA3.

Common practise is to send such packet in regular intervals (tenth of seconds, e.g. 20 sec.)
and test if connection is still active.

21

Chapter 8. Channel support

Itis also possible to pack frames into channels. This technique allows to transfer large frames
and also manage data transfer. Channels allow to multiplex several frames and transffer
them simultanously. One frame is usually transferred in multiple packets.

0123 4567 8901 234...
M3 D CH D FRSZ FRDT. .

Table 8.1. Packet with Channel Support

Item Size Description

MGID 4 Packet idenfiticator (magic id), expected value:
0xF2 0x87 0x05 0xA3

CHID 4 Channel ID - same as frame type

PKSZ 4 Packet size (number of bytes)

PKDT Defined in PKSZ Packet Data, size is defined in PKSZ

Transferred data are same as defined for frames. Items MGID, FRTP, FRSC from original frame
structure are not transffered. All other items are included.

Note

This feature can be implemented step by step. Easist implementation is frame
type=1.

1. Example

Example of data frame transfer using channels. Frame is packed in two separate packets.
Total size of transferred data is 15 bytes..

Packet 1:

0xF28705A3 (Md D)

0x00000001 (channel id)

0x0000000A (size of data in the packet)
0x0000000F (size of frame, type 1)
0x12345678 0x1234 (data - 6 bhytes)

Paket 2:

0xF28705A3 (Md D)

0x00000001 (channel id)

0x00000009 (size of data in the packet)
0x12345678 0x12345678 0x12 (data - 9 bytes)

22

Chapter 9. Example of
communication

There is example of authorization and document request in the folowing table.

Table 9.1. Example of Authorization and pushDocument

Direction Method Description

(C=client, S=server)

C-S hello Send hello packet

S-C Ret hello Response to the hello packet

C-S aut hori ze Autorization request

S-C Ret authori ze Server response for authorization
request

C-S set State Client change protocol state.

S-C pushDocunent Server sends new document to the
client. Clients check its own cache
and requests missing pages.

C-S requestFile Page request

S-C Data, Type=1 Page data - server response

Next example shows how-to send changes back to the server.

Table 9.2. Example of Document Save Operation

Direction Method Description

(C=client, S=server)

C-S saveDocunent Save document to the server, server
has to create new page ids and send
them back.

S-C Ret saveDocunent |Serveris returning new IDs which will
be used to send data.

C-S Data, type=1 Page data.

S-C r ecei vedDocunent |Notification about succesfully

received document. Notification is
sent when whole document is
complete.

23

Chapter 10. Implementation

This proposal allows quite effective and relativly fast implementation of the protocol. We
recommend to use priority queue for the server side implementation. Such queue should
allow to send information about documents prior to data files.

There are some aspects of the protocol which can be little bit more complicated to
implement:

* Document Save with correct versioning - expecially on server-side.

* Received Document - document should be available for users as soon as possible but real
data files can be received later.

24

	Document Exchange Protocol 2 (DEP2)
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Changes
	1. Changes 2006-04-25
	2. Changes 2006-12-18
	3. Changes 2007-03-28
	4. Changes 2007-07-26
	5. Changes 2007-10-02
	6. Changes 2007-10-09
	7. Changes 2007-10-18
	8. Changes 2007-10-22
	9. Changes 2007-11-07
	10. Changes 2008-06-24
	11. Changes 2009-02-17
	12. Changes 2009-07-14
	13. Changes 2009-07-21
	14. Changes 2009-09-14

	Chapter 3. Basic Structure
	Chapter 4. Frame Type 0
	1. Method Response
	2. Hello
	3. Authorization
	3.1. authorize
	3.2. authorize2

	4. Connection State
	5. Objects
	6. Documents
	6.1. Structure Document
	6.2. Push Document
	6.3. Get Document
	6.4. Save Document
	6.4.1. Error notification
	6.4.1.1. errorReceivedDocument
	6.4.1.2. errorStoreDocument

	6.5. Remove Document

	7. Files
	7.1. Request File
	7.2. Failed File Request
	7.3. Configuration Request
	7.4. Configuration Request 2 (update configuration)
	7.5. Failed Config Request

	8. Tasks
	8.1. List of Tasks
	8.2. Task Request

	9. Folders
	9.1. Open Folder
	9.2. Close Folder
	9.3. Notifications
	9.4. Rename Folder
	9.5. Add Document to Folder
	9.6. Move Item
	9.7. Remove Folder

	10. Disconnect

	Chapter 5. Frame Type 1
	1. File Attributes

	Chapter 6. Frame Type 2
	Chapter 7. Testing packet
	Chapter 8. Channel support
	1. Example

	Chapter 9. Example of communication
	Chapter 10. Implementation

