
Tahiti
Administration Guide

Tahiti: Administration Guide
5.x
Copyright © 2001-2010 LightComp v.o.s.

iii

Table of Contents
1. Introduction .. 1
2. Installation ... 2

1. Software and hardware requirements .. 2
1.1. Hardware ... 2
1.2. Microsoft Windows ... 2
1.3. Linux + Wine .. 2

2. Distribution .. 2
2.1. MSI Package .. 3
2.2. ZIP file .. 3

3. Custom Installation ... 4
4. Running Tahiti .. 4

4.1. Parameters .. 5
4.2. Registration ... 5

5. Local Repository ... 5
5.1. Repository structure .. 5
5.2. Local part .. 6

6. File Formats ... 6
6.1. Images, photos .. 6
6.2. Word, Excel and OLE2 servers ... 7
6.3. Text Files ... 7
6.. HTML, PDF files ... 7
6.5. Forms .. 7
6.6. Packages, reports .. 8
6.7. Email's .. 8
6.8. OpenOffice .. 8

3. Configuration .. 9
1. Domain .. 10

1.1. XML format .. 10
2. Repository .. 11
3. Configuration inside Repository ... 11
4. Profiles ... 11

4.1. Default Profiles .. 11
4.2. User-Defined Profiles .. 12
4.3. Profile Reference .. 12

5. Logging .. 13
6. Components ... 14
7. Communication .. 15

7.1. TAHITI_DEP2 .. 16
7.2. TAHITI_FTP_SEND ... 17
7.3. TAHITI_SFTP_SEND ... 17

8. Variables .. 17
9. MIME types .. 18

9.1. Freedesktop.org.xml ... 18
9.2. MimeTypes.xml .. 18

10. Help Customization ... 19
4. Documents ... 20

1. Document Types ... 20
1.1. Class Attributes ... 20
1.2. Document Attributes .. 20

2. Format of cmserver2.xml .. 21
3. Format of cmserver3.xml .. 21
4. Document Tree ... 21

4.1. Document Attributes .. 21
4.2. Filters .. 22

5. File Format of presentations.xml ... 22

Tahiti

iv

5.1. Simple hierarchy .. 22
5.2. Views .. 22
5.3. View .. 24
5.4. Level ... 25
5.5. Filter .. 25

5. Workflow .. 27
1. Native Format .. 27

1.1. File Format .. 27
2. TPD Format .. 28

2.1. Actions .. 29
2.2. Conditional Attributes .. 29

6. Scanning .. 30
1. Scanning profiles .. 30
2. Attributes generation .. 32

2.1. Fixed ... 32
2.2. DocumentType ... 32
2.3. Incremented .. 33

3. Empty page detection .. 33
3.1. Attributes .. 33

7. Document Assembly ... 35
1. Configuration .. 35
2. Damis.xml .. 35

8. Components ... 38
1. Explorer ... 38
2. Update ... 38

9. Input Plug-ins ... 40
1. Configuration .. 40

1.1. Damis.InputPlugins .. 41
1.2. Damis.OnReceived.InputPlugins .. 41

2. Basic Filter ... 41
3. Photo Filter ... 41
4. Tiff Splitter ... 42
5. AVN Filter ... 42
6. ChangeMimetype filter .. 42

10. Add-ons for Applications ... 43
1. Internet Explorer .. 43
2. Lotus Notes .. 43

2.1. Form MimeConverter ... 43
2.2. Agent "Export to Tahiti" ... 44

3. Microsoft Office .. 44
3.1. Troubleshooting ... 44

4. OpenOffice ... 44
4.1. Registration ... 44

1

Chapter 1. Introduction
Application Tahiti provides access to the documents stored in the document management system.
Tahiti allows to view and edit such documents as well as to create new ones. Program is also design
to be entry point to the electronic archive. Tahiti have support for:

• document scanning (flat scanners, mid- and high-speed scanners, quality control, bar-codes, etc.)

• digital cameras

• document identification

• emails

Whole application consists from main program and libraries which provides integration with other
applications like Microsoft Office, Internet Explorer, Lotus Notes.

This guide describes technical features, application configuration and customization. It is intended
for administrators, technical support and other specialist. This is not user guide for Tahiti. It is also
possible to integrate Tahiti with other third-party applications or use from other application. For these
options look at the programmers guide or contact software vendor.

This documentation evolves in the time. Please let us know if you find any mistake or inconsistency
in this documents. Email: <tahiti@lightcomp.com>

2

Chapter 2. Installation
1. Software and hardware requirements
Program is designed for Microsoft Windows 2000, XP, 2003, Vista, 2008 and later editions. Tahiti
is fully 32-bit application. Program can be used together with terminal services on Windows 2000,
2003, 2008, Citrix – there are no explicit restrictions but some can exists which are given by these
systems (e.g. color depth). Usage of scanners and digital cameras together with terminal servers is
not recommended and can be problematic.

1.1. Hardware
Hardware requirements depends on used operating system. It also depends on the way of Tahiti
usage (workplace type), document types and their sizes. For scanning workplace's consult hardware
requirements with scanner manual and also take a look in the chapter about scanning.

Table 2.1. Minimal configuration
Processor Pentium II 400+
RAM 256Mb, recommended 512Mb
Graphical card 1024x768x16bits

Appropriate pointing device is essential. Program is design to run in dual head configuration (two
monitors). It is usual to run application for access to the information system on one monitor and Tahiti
on the second one. Application support such usage.

Tahiti can be resource consuming application. It depends on way of usage but it can be caused by:

• parallel opening of higher number of pictures (photos)

• work with embedded objects (OLE2)

• scanning with some transformations, smart quality control, bar-code recognition etc.

Note
Tahiti is graphical application and it is recommended to have enough system resources for
efficient usage. It is also very important to train users for proper use of Tahiti. We know from
our technical support what users are able to do. So please do not underestimate good training.

1.2. Microsoft Windows
Tahiti is design to be run on Microsoft Windows 2000 and later. From version 5.x Windows 2000 are not
fully supported and we recommend to use Windows XP or later. Tahiti is registered in the system as
a COM Server and requires proper registration. Check installation section for more information about
required libraries and their registration.

1.3. Linux + Wine
Tahiti can be used on the Linux platform together with Wine. However some features are only
supported on Microsoft Windows. Please contact software vendor for proper configuration and further
informations.

2. Distribution
Tahiti is distributed in two forms:

Installation

3

• MSI package (Microsoft Installer) - end user installation file

• ZIP file - contain all Tahiti files and also SDK

You can create your own customized distribution/installation package - based on MSI or use othe
installation program (InstallShield, InnoSetup). Such package have to comply with License Agreement.

2.1. MSI Package
Tahiti starting from the version 5.0.4 is distributed as MSI package. It is currently preffered way
of distribution. One package can be used for end-user installation and also can be customized by
administrator. Check chapter MSI Customization for more details about MSI customization.

2.2. ZIP file
ZIP file contains binary files, documentation, configuration files, examples, add-ons and also SDK
(Software Development Kit). File can be used by developers (to use SDK) or by system integrators
and administrators to create own custom install. Following table shows distribution layout.

Table 2.2. Distribution layout

Path Description
/bin binary files, main application
/bin/chrome Chrome files for Tahiti and Xulrunner
/bin/components xpcom components
/bin/configs configuration directory
/bin/defaults Xulrunner default configuration
/bin/greprefs Tahiti-Mozilla preferences
/bin/locale/??/
LC_MESSAGES

localization packages, cs - Czech, ru - Russian

/bin/logs log files are stored in this directory (if enabled)
/bin/scannerui scanner control dialog
/conf example of configuration
/doc Documentation (.chm, .pdf)
/doc/admin Administration guide
/doc/pg Programmers guide
/doc/scan Separators for scanning
/doc/sap examples of SAP integration
/ext/.. Tahiti extensions
/ext/barcode Bar code recognition, need separate license
/ext/fastReport FastReport
/redist Redistributation files (runtimes required by Tahiti)
/sdk Software Development Kit for Tahiti
/sdk/addons Addons for 3rd party applications (Lotus Notes)
/sdk/bin Binary files for SDK (tests, utilities)
/sdk/samples Examples of various types, scripts, etc.
/sdk/samples/
DataForms

Examples of data forms - used for data-mining

Installation

4

Path Description
/sdk/samples/forms Examples of Tahiti simple forms
/sdk/samples/
packages

Examples of Tahiti Packages (.tpkg)

/sdk/samples/sap Examples of SAP integration objects
/sdk/samples/
vbscript

Examples of Visual Basic Scripts (.vbs)

/sdk/xpidl XPCOM interface definition files (.idl)
/setup Default setup script for InnoSetup
changes.html list of changes

To prepare your own installation package you should consider using of MSI based installer. You can
use classical installation products like InnoSetup. In such case it is up to you to prepare distribution
plan and distribution itself. However there are pre-prepared setup configuration files. For larger
organizations we recommend to use Invoker for distribution and installation. Invoker is separate
application for automatic updates and installations.

3. Custom Installation
You can skip this section if you are using MSI based installer.

Installation depends on way of usage and customization for given workplace. In general you should
install all files from the bin directory and include also other files like your own extensions and
add-ons. Description of all files is in separate paragraph. Default and recommended directory for
installation is Program Files\LightComp Tahiti 5\ . User configuration should be done in
domain configuration files, these are installed in the configs directory.

Some of the files have to be registered during installation.

Table 2.3. Files to be registered

Name Description
/bin/BarcodeControl.dll Component for barcode generation
/bin/ExcelAddin.dll Microsoft Excel integration
/bin/IEHelper.dll Internet Explorer integration
/bin/OutlookAddin.dll Microsoft Outlook integration
/bin/TahitiCommon.dll Definition of Tahiti COM interfaces
/bin/TahitiPackage.dll Component used for document processing and automation
/bin/TahitiRedemption.dll Component for MSG conversion
/bin/WordAddin.dll Microsoft Word integration
/bin/Components/
TahitiSapLink.dll

Component for SAP integration

/bin/Tahiti.exe Main application (run Tahiti.exe /Register)

4. Running Tahiti
Tahiti can be run from main directory clicking on the file Tahiti.exe or using COM interface (detail
description is in the Programmers Guide). User have to select domain, offline or on-line mode. It is not
possible to send or receive any data in offline mode. Tahiti is usually executed without any parameters.

Installation

5

Tahiti will alwasy run as 1 process for several domains.

4.1. Parameters
Table 2.4. Tahiti parameters

Parameter Description
/d <domain> Domain to be used.
/offline Automatically run Tahiti in offline mode.
/password <password> Password
/profile <name> Use specified profile. This option can be used to force Tahiti to use

profile. 'name' is name of file profile as defined in the profiles.xml
. E.g.: /profile tahitiDefault will read configuration from file
tahitiDefault.xml. Profile will be read only if domain is specified.

/user <user-name> User name

4.2. Registration
During the installation process Tahiti have to be properly registered. All required .dll files have to be
registered and also main binary. To do this step there is set of parameters. Do not use this parameters
together with regular parameters.

Table 2.5. Tahiti parameters

Parameter Description
/Register Register Tahiti.exe
/Unregister Unregister Tahiti.exe
/Embedding Run Tahiti in embedding mode (used for COM)
/Automation Run Tahiti in automation mode (used for COM)

5. Local Repository
Tahiti requires local document repository where are stored documents, working files, user
configurations. Repository is usually at the Documents and Settings\USER\Application
Data\LightComp\Tahiti\5.0\. Some working files, cache etc are stored in the location of non-
roaming profile, typically at Documents and Settings\USER\Local Settings\Application
Data\LightComp\Tahiti\5.0\. Default location can be override in configuration, parameter
Tahiti.Repository.Path.

5.1. Repository structure
Repository contains several files and directories. Files and directories bellow are part of the roaming
profile. If user log on another computer within Domain (Active Directory) these files will be shared.

Table 2.6. Repository structure

Name Type Purpose
settings.xml file User settings
<domain>/*.xml file Domain specific configuration files, document types

etc.
<domain>/profile.xml file Actual toolar/user interface layout

Installation

6

Name Type Purpose
cmserver2.xml file active copy of file defining document types - older

format
cmserver3.xml file active copy of file defining document types - newer

format
domain.xml file Configuration file for the domain. This is optional file

- domain configuration can be read from this file or
from file in the configs directory.

presentations.xml file active copy of file for displaying document hierarchy
DS directory scanned batches
EL directory history records
profiles directory tool-bar layouts
thumbnails directory thumbnails cache, part of the local (non migrating)

profile

Directory can contain other configuration files downloaded from the server. These files have higher
precedence then files in the configs directory.

5.2. Local part
Repository contains several files and directories. Files and directories bellow are part of the roaming
profile. If user log on another computer within Domain (Active Directory) these files will be shared.

Table 2.7. Repository structure

Name Type Purpose
camel-cert.db file Certificates used by mail component
WFS directory Working files (temporary).
mozilla-sec directory Mozilla security database (keys, certificates).
<domain>/db file object database of local repository
<domain>/data directory contain binary data for documents in local repository,

part of the local (non migrating) profile
<domain>/damis directory contain data for Damis system (downloaded

packages).

6. File Formats
Tahiti have direct support for several document and image types. These are opened inside Tahiti and
can be viewed and edited. Document type is determined by MIME type provided for given file from
information system or by operating system. File types which does not have direct support are opened
in external application.

It is essential to establish rules which defines supported MIME types and application used for such
files. Tahiti can be configured in several ways. There is brief overview of supported types.

6.1. Images, photos
Tahiti can view and annotate several image types. Usually TIFF files are used for storing scanned
images and JPEG files for photos. TIFF often serve as a container for several other file formats like
CCITT G3, G4, etc. Tahiti have extensive support for TIFF variants.

Installation

7

Table 2.8. Image view supported types
Extension MIME type Description
bmp image/bmp Windows or OS/2 Bitmap
cut image/freeimage-cut Dr. Halo
g3 image/fax-g3, image/g3fax Raw G3 fax
gif image/gif GIF image
ico image/x-icon Windows Icon
iff,lbm image/freeimage-iff IFF Interleaved Bitmap
jpg,jif,jpeg,jpe image/jpeg JPEG - JFIF Compliant
jp2,jpc,j2k image/jp2 JPEG-2000 JP2 File Format and JPC Code

Stream Syntax (ISO/IEC 15444-1)
koa image/freeimage-koala C64 Koala Graphics
mng video/x-mng Multiple Network Graphics
pcd image/x-photo-cd Kodak PhotoCD
pcx image/x-pcx Zsoft Paintbrush
png image/png Portable Network Graphics
pbm,pgm,ppm image/freeimage-pnm Portable Network Media
psd image/freeimage-psd Adobe Photoshop
ras image/x-cmu-raster Sun Raster Image
tga,targa image/freeimage-tga Truevision Targa
tif,tiff image/tiff Tagged Image File Format
wap,wbmp,wbm image/vnd.wap.wbmp Wireless Bitmap
xbm image/x-xbitmap X11 Bitmap Format
xpm image/xpm X11 Pixmap Format

6.2. Word, Excel and OLE2 servers
Tahiti is OLE2 container. It means it is possible to work with Word, Excel and other documents
inside Tahiti. There is special support for Microsoft Office documents. Lot of OLE2 servers have small
differences in behavior and might need some integration work. Fully tested and recommended are
Microsoft Office versions 2000, XP, 2003, 2007, 2010.

6.3. Text Files
Text files are expected to be in local machine encoding. Information system should not use text files
directly but preferable other file formats, like for example HTML for read-only documents.

6.. HTML, PDF files
Internet Explorer is one of embedded containers inside Tahiti. It allows to display HTML files but also
PDF files and other read-only formats. Adobe Acrobat should be installed. It is possible to use other
alternative applications which have plug-ins for Internet Explorer.

6.5. Forms
It is possible to display .TFR files (Tahiti Form). Tahiti has support for simple form processing. They can
be used for data mining or other tasks where user input is required. There is special chapter about
form processing and creation.

Installation

8

6.6. Packages, reports
Files with extensions TPKG. Such files are packed files which contains transformation script, document/
report template and instruction how to process. Such files are processed on the client side and can
produced Word, Excel and other documents. Packages are often used for personalized letter and
reports. There is special chapter on this topic.

6.7. Email's
Tahiti can be used to view and edit email's. It it possible to integrate writing/reading email's
with work-flow events. Email's can be archived and identified same way as images and other
documents. Email support is described in separate chapter. Tahiti in general handle mimetypes:
message/rfc822, application/msoutlook. New-ly created or replied emails have mime-type
Tahiti.ComposeEmail.

6.8. OpenOffice
Tahiti can open OpenOffice file formats like ODT, ODS, ODP. Tahiti is tested with OpenOffice 3.1 and
higher. All documents are opened inside Tahiti.

9

Chapter 3. Configuration
Tahiti cannot be run as a stand alone system but only in connection with some information system,
integrated into business process or as part of document management system. Such system defines
document types, document identifiers and relations. Documents are valid only in context of such
system.

Tahiti can provide access to one or more information systems (so called domains) and every domain
have to be described in separate configuration file.

Configuration also allows to customize Tahiti for several different workplace's and different
tasks. Proper configuration and distribution of configuration files is also vital for effective usage.
Configuration process is on the next picture.

Basic configuration is stored in the file Tahiti.xml which is located in the main directory. This is
key file for Tahiti. Please do not remove any configuration options from this file. It is only possible to
change default values. Any configuration changes should be done in the domain configuration files.
Domain configuration files are stored in the directory configs or directly at the local repository in
the file called <domain>/domain.xml.

 \TahitiDirectory
 Tahiti.exe
 Tahiti.xml
 \configs
 DOMAIN1.xml
 DOMAIN2.xml
 \DOMAIN1
 ... DOMAIN1 configuration files ...
 \DOMAIN2
 ... DOMAIN2 configuration files ...

Every domain is represented by one configuration file in configs directory and one directory with
subsequent configuration files for this domain. Name of the directory have to be same as domain
name in configuration file.

Common configuration parameters for all domains:

• components - available components

• MIME types - description of document types, how to open, edit them

Configuration

10

Every domain have to have these parameters:

• domain name - unique string for every domain. Usually in format of domain. e.g.
primary.accounting.skoda-auta.cz

• communication - configuration of communication channels and their settings

All configurations are stored in xml files. Configuration is stored in pairs of "name" and "value". Value
can be string or number.

1. Domain
Domain configuration file is usually named DOMAIN.xml (where DOMAIN is domain name) and is stored
in configs directory. File can override almost all configurations specified in Tahiti.xml. Minimal
domain configuration have to contain:

• domain name

• user domain name - domain name displayed to user

Each domain have separate working directory, local document database. All these items are stored
in a directory call local domain repository. Domain configuration can be also stored directly in this
directory and file have to be called domain.xml.

Example of domain configuration:

<?xml version="1.0"?>
<Config>
 <Item name="Connection.Domain"
 value="lc.ucto.lightcomp.cz"/>
 <Item name="Connection.Name"
 value="LightComp.Ucto"/>
 <Item name="Connection.Options"
 value="...."/>
 <Item name="Connection.RequestConfig.DocumentTypes"
 value="cmserver2.xml"/>
</Config>

Table 3.1. Domain configuration options
Name Description
Connection.Domain Domain name, used as a domain identification. It can be server domain

name with added service name, e.g. documents.server1.skoda-auto.cz
Connection.Name Domain name displayed to user, should be easy for user to understand

where he is going to connect

If any of these two options is not defined configuration is invalid and cannot be used. List of valid
configurations is displayed in the login dialog at Tahiti start-up.

1.1. XML format
Tahiti.xml has relativly simple format. Domain configuration has almost the some with only few
small differences. Each configuration contains root tag <Config>. This tag contains list of items each
within tag <Item>. This tag describe one option. Definition of such option have to be in the main
configuration. This definition contains attributes name, type and default. Domain configuration on
the other hand has only attributes name and value. Item definition in the main configuration can
contain tag <description> with the description of the item.

Attributes of the tag <Item> in the configuration file are in the following table.

Configuration

11

Table 3.2. Attributes of tag <Item>
Name Usage Description
name tahiti.xml,

domain.xml
Name of the item

type tahiti.xml Type of the item, can be int or string
default tahiti.xml Default value. This value is used for all domains if

not redefined in domain.xml.
value domain.xml Domain specific value of the item.

2. Repository
Repository is created inside the user profile. It is possible to override this location in option
Tahiti.Repository.Path. There are only few reasons for changing this location and we do not
recommend to change it. Default location allow to use Roaming Profiles in Windows.

Table 3.3. Repository parameters
Name Description
Tahiti.Repository.Path Path to the repository. This have to be fully qualified path. Path can

contain variables.

3. Configuration inside Repository
Domain configuration can be stored inside repository (not part of the configs directory) and all other
configuration files can be downloaded from the server. This approach is suitable for the situation
when there is one Tahiti distribution common for several domains. Domain configuration is stored
at the file called domain.xml. It is possible to use utility called configDownload to download this
configuration from the web server and store it at the right place.

There is special configuration option called Connection.RequestConfig.TahitiPacked. This is
name of server side file with packed configuration. If this option is not empty configuration will be
downloaded during logon. Tahiti is using MD5 sum to check if there is new configuration available.

4. Profiles
Profiles are fundamental part of Tahiti and allow to customize look&feel to the specific needs, e.g.
document viewing, scanning. There are several predefined profiles and administrator can change
these or create new profiles. Default profiles are located in the directory bin/TahitiProfiles. Main
file is profiles.xml and contains description of defined profiles. All profiles can be also redefined
in domain specific settings.

4.1. Default Profiles
There are 5 standard predefined profiles in Tahiti distribution.

Table 3.4. Default Profiles
Name Description
tahitiDefault This profile is used when Tahiti is run for first time. It can be later used to

change or restore profile.
tahitiDocViewer Profile for document viewing and editing.
tahitiScan Profile is design for scanning documents using attached scanner.

Configuration

12

Name Description
tahitiPhoto Import photos from the camera connected over USB. Only cammeras which

are mounted as disk are directly supported, typicaly Olympus.
tahitiDamis Profile for mass-data processing using Damis System. This profile is hidden

by default.

4.2. User-Defined Profiles
It is possible to redefine any of the default profile or create new profile. Recommended way is to
customize predefined profiles and only if no one is suitable to create new. User-defined profiles are
defined in the profiles.xml. It is possible to change profiles.xml in the bin/TahitiProfiles
but it is more convenience to change redefine this file in the domain specific directory in the repository,
e.g. <repository>/<domain>/TahitiProfiles/profiles.xml.

There are two profile specific configuration options in the Tahiti.xml:

Tahiti.Profiles.Default Name of the default profile. It is used for first time
when user run Tahiti

Tahiti.Profiles.Active Name of the last used profile.

4.3. Profile Reference
Profile Reference sections contains detail description of profiles.xml.

Example 3.1. Example of profiles.xml
<?xml version="1.0"?>
<TahitiProfiles>
 <Profile id="tahitiDefault"
 contentUrl="chrome://tahiti/content/intro.xul"
 saveChanges="0">
 <Name>Introduction</Name>
 <Name xml:lang="cs">Uvítání</Name>
 <Name xml:lang="en">Introduction</Name>
 <Description>This profile is used</Description>
 <Description xml:lang="cs">Profil použitý p#i ...</Description>
 </Profile>
 <Profile id="tahitiDocViewer">
 <Name>Documents</Name>
 <Name xml:lang="cs">Dokumenty</Name>
 <Name xml:lang="en">Documents</Name>
 <Description>Recommended profile for</Description>
 <Description xml:lang="cs">Zobrazení</Description>
 </Profile>
</TahitiProfiles>

Root Element: TahitiProfiles

4.3.1. TahitiProfiles
This is top-level container element for all defined/redefined profiles.

Children: Profile

4.3.2. Profile
The Profile element contains profile definition Each profile have to have attribute id - this is unique
profile identifiier. Redefined profile have same id as its predecesor.

Configuration

13

Children: Name, Description

Table 3.5. Profile Attributes

Attribute Required Description
id yes Profile identifier; this is the primary key for identifying profile.
contentUrl no Optional attribute; this is URL of the file which will be opened when

user select this profile. Default profile uses this option to open
introduction page.

saveChanges no Option allows to control if user changes should be saved. Default
value is 1; changes are automaticly saved. Possible values: 0|1

visible no Flag if profile is visible for users. Default value is 1; profile is visible.
If this value is 0 profile is hidden. Possible values: 0|1

4.3.3. Name
The Name Element is profile name. This is user visible name and can be localized.

Inner Text: Name of the profile.

Table 3.6. Name Attributes

Attribute Required Description
xml:lang no Language; this is language for which is this name valid. If not

specified inner text is used as default name.

4.3.4. Description
The Description Element is profile description. This is description of the profile.

Inner Text: Descritption of the profile.

Table 3.7. Description Attributes

Attribute Required Description
xml:lang no Language; this is language for which is this description valid. If not

specified inner text is used as default description.

5. Logging
It is possible to log several application activities. It can be used for diagnostic and debugging purposes.
It is recommend to switch off logging in production environment.

Table 3.8. Logging options

Name Description
Tahiti.Log.Path Path where to store log file. Path should include last slash otherwise it

is used as a filename prefix.
Tahiti.Log.System Logging level. =0 - switched off, >0 - switched on

Logging level should in interval <0; 4>. 4 is the highest logging level. Logging can be only set in the
main Tahiti.xml.

Configuration

14

6. Components
Tahiti consist from several components. Each component have own configuration options and can be
switched on/off. There are internal components (shared components) which are integral part of the
application (through some of them can be switched on/off) and also there are domain components.
Domain components can be used as plug-ins to extend Tahiti.

Not all work-places need all components and they does not have to be initialized. Switching-off can
speed-up application start-up and use less system resources.

Table 3.9. List of shared Tahiti components
Name Description
Component.Mozilla.Core Basic component for Mozilla (XPCOM, XUL) integration.
Component.ExternalView Bridge for other XPCOM-based views
Component.XULView View for XUL files
Component.XULFormView View for files based on XUL (predecesor for mail view)
Component.ComposeMail Mail composer
Component.Mozilla.EmailView Base component for mail viewer
Component.ViewMail Mail view component
DocumentIO Document Input/Output Component
Component.PictureView.Base Picture view base component
Component.EditView Edit view component
Component.FormView Form view component
Component.HTMLView HTML view component (used to display PDF)
Component.Ole2View OLE2 view component (.DOC, .XML, .PPT)
Component.ExecutableView Component for openning outside Tahiti
Component.PackageView Package view component
Component.PictureView Picture view component (.TIFF, .JPEG, ,.PNG)
Component.XPCOMSharedBridge Bridge for other XPCOM-based shared components

Table 3.10. List of Tahiti domain components
Name Description
Core.Repository Document repository. This component is essential for

DocumentManager
Core.Scan Low-level component for scanning. TWAIN interface
PropertyControl Property Control - display list of properties
IntegratedBrowser Optional bar with integrated browser (Firefox). Can be

used for closer integration with other system
DocumentManager Component provides access to localy stored

documents
Scanner Scanner component allows to scan document
PhotoImport Component for import from cameras
Damis Optional component, allow to communicate with

DAMIS system
Component.ShellFiles Optional component, allow to display embedded

Explorer.

Configuration

15

Name Description
CanClose.Component Component display confirmation dialog
Remove Old Documents Component removes offline documents from the local

repository during start
License Component Check valid license and display dialog
System Message Handler Component process action object

'Tahiti.System.Message'
Component.Tahiti.SapGui.ComBridge External component which is used for SAP integration
XPCOMDomainBridge Bridge for other XPCOM-based domain components

Tahiti can be extended with other components. There is configuration option called
Components.XPCOM.Load. It is expected to receive comma separated list of components to be
loaded. Components are physically stored inside directory Components. This option contains only
domain components and cannot contain any shared components.

Example 3.2. Example of Components.Load

<Item name="Components.XPCOM.Load"
 value="@lightcomp.com/tahiti/sapgui.com;1">
</Item>

7. Communication
This chapter discuss communication between Tahiti (Document Manager) and other systems like
document management system or information system. This chapter does not cover communication
realized with other components and systems like DAMIS, Web, etc. These systems are described in
separate chapters.

Tahiti allow communication primary with one document management system. It is called as Primary
Connection. This connection should provide available document types, configuration. There is also
possibility to communicate with more servers or use different communication protocol. Default and
also the most powerful protocol is called DEP2. Protocol specification is available at the LightComp
development web site. Each communication channel is configured by two items: used module name,
configuration string.

Table 3.11. Communication configuration

Name Description
Connection.Primary.Options Settings of primary communication
Connection.PrintServer.Type Type of module used for communication with printing

service
Connection.PrintServer.Options Setting for printing service

PrintServer connection can be used for sending documents to the specialized printing service. This
logic should be preferably realized on the server side but if it is necessary it can be done on the client
side.

Table 3.12. List of communication module

Name Description
TAHITI_DEP2 Default communication protocol. This full-duplex protocol which allows

server to push documents and events to the client and also to send
changes and new documents from the client to the server

Configuration

16

Name Description
TAHITI_FTP_SEND Standard FTP protocol. Allow to store new documents and changes to

the server
TAHITI_SFTP_SEND Standard SFTP protocol. Allow to store new documents and changes to

the server

It is possible to write custom communication modules and customize Tahiti usage. Communication is
configured with configuration string.

Example 3.3. Example of configuration string
user=%TAHITI_DOMAIN%:%TAHITI_USER%;
 password=%TAHITI_PASSWORD%;
 server=sds.lightcomp.cz;
 port=7780; pingInterval=10;

Configuration string consist from pairs (name=value) separated by semicolon. Configuration is
specific for each module.

7.1. TAHITI_DEP2
Main communication module for connection to the Document Management System. This module allow
to send and receive documents.

Table 3.13. DEP2 parameters
Parameter Required Description
user yes user name
password yes password
server yes server address - name or IP address
port no port where to connect, default port is 7780
logLevel no logging level, default is 0, 0 - switched off, 4 - maximum

level
logTarget no where to log, it is possible to redirect all logging from file to

the windowlogTarget=window will set write data to the
separate window

cache1 no Path to the local cache. Cache is created in the subdirectory
"pageCache". If path does not exists it will be created.

cache1NumLevels no Cache is using hierarchy structure of directories. There is
16 directories on each level. Default value is 1.

cache1MaxSize no Maximal cache size. Size is in the Megabytes (MB). If this
parameter is not specified cache size is unlimited.

cache2 no Path to the global cache. This cache has 3 levels. If this path
is not valid at the Tahiti startup-time cache will not be used.

ssl no SSL based communication, default is 0, 0 - switched off, 1
- switched on

pingInterval no Time in seconds between keep alive packets. By default
keep alive packets are not sent.

channels no Set if channels should be used for sent data, default is 0. 0
- switched off, 1 - switched on

filter no Name of attribute to be used as a filter. If set only
documents with this attribute will be sent.

Configuration

17

Parameter Required Description
connectOnSend no Usually connection is established when Tahiti starts up.

This options allows to start/stop connection for each sent
document (same as HTTP), default is 0. 0 - switched off, 1
- switched on

auth no Authentication method. Default value is plain. (This
parametr can be overwriten when Tahiti is run via COM
interface)

Cache is using auto-management technique. Maximum cache size is checked 10 minutes after start
and later checked every hour.

Example 3.4. Example string

user=%TAHITI_USER%;password=%TAHITI_PASSWORD%;
 server=192.168.0.1;port=7780;
 logLevel=4;logTarget=window

Example 3.5. Example with local cache

user=%TAHITI_USER%;password=%TAHITI_PASSWORD%;
 server=192.168.0.1;port=7780;
 logLevel=4;
 cache1=%CSIDL_LOCAL_APPDATA%\LightComp\Tahiti\5.0\%TAHITI_DOMAIN%

7.2. TAHITI_FTP_SEND
FTP module allow to upload data to the server. Format of uploaded data is specified in developer
documentation.

Table 3.14. FTP parameters

Parameter Required Description
user yes user name
password yes password
server yes server address - name or IP address
dir yes server directory
port no port where to connect, default port is 21
active no active/passive connection, active=1 -> active connection
dirMask no mask of target directory
filter no optional filter settings

7.3. TAHITI_SFTP_SEND
SFTP module have same configuration parameters as FTP module except possibility to specify active
mode. SFTP module can be used only in one connection per application.

8. Variables
Tahiti have system of internal variables. It is possible to use such variables in several configuration
strings. Table contains some broadly available variables. Other variables are valid only in special cases.

Configuration

18

Table 3.15. Variables
Name Description
TAHITI_USER user name - name of logged user
TAHITI_PASSWORD password
TAHITI_REPOSITORY path to the repository
TAHITI_DOMAIN domain
TAHITI_BIN_PATH path to the binaries
CSIDL_DESKTOPDIRECTORY desktop directory
CSIDL_PERSONAL documents folder
CSIDL_APPDATA application folder
CSIDL_LOCAL_APPDATA local application folder (not part of roaming profiles)
CSIDL_PROGRAM_FILES program files

Note
Variables CSIDL_XXX have same meaning as corresponding variables as defined in the
Windows Shell and Controls API™.

9. MIME types
Document processing in Tahiti is based on the MIME types. They are used for decision how to view
and edit page. It is also possible in some cases find out corresponding MIME type from extension.
Configuration files are used to set mapping between extension, MIME type and eventually to configure
external application which is able to open it.

MIME type configuration is read in 3 stages:

1. freedesktop.org.xml

2. registry

3. mimetypes.xml

The best approach is to view and edit file inside Tahiti. It allows to have control over user actions and
also to know which application is used and how. If file format is not supported for direct opening it is
stored in temporary directory and opened with default system application associated this file type.

9.1. Freedesktop.org.xml
File contain platform independent list of MIME types and usual extensions and is used in the Tahiti as
basic configuration. Actual file can be downloaded from http://freedesktop.org. There is also available
specification of used file format. This .xml file is relatively big and it is possible to strip down unused
types and speed up Tahiti startup.

Registry records are read after freedesktop.org.xml. Registry are also used for finding which
application should be used for given MIME type, extension.

9.2. MimeTypes.xml
File is loaded after all other configuration files and can be used for overriding registry settings.

Use cases:

• specification of user defined types

http://freedesktop.org

Configuration

19

• mapping between extension and MIME type

• configuration of preferred external application

Tahiti monitor each running external application and try to recognize when user close program and
save modified file. MimeTypes.xml allow to configure technique of monitoring specific application.

Table 3.16. Monitor types
Type Description
1 File lock is monitored
2 Process existence is monitored

File contain list of tags called MimeType. Application used for opening file can be defined inside this
tag. If no application is specified tag is used only as mapping between MIME type and extension.

Table 3.17. MimeType Attributes
Attribute Required Description
type yes defined MIME type
extension yes extension for MIME type
attr no used monitoring technique

Example 3.6. MimeTypes.xml example

<?xml version="1.0"?>
<MimeTypeDatabase>
 <MimeType type="application/msword" extension=".doc"/>
 <MimeType type="text/plain" extension=".txt" attr="2">
 %SystemRoot%\system32\NOTEPAD.EXE %1
 </MimeType>
</MimeTypeDatabase>

It is possible to use variables in application specification. Variable %1 will be substituted with file name.

10. Help Customization
Help files can be defined as part of configuration process. Help can consist from files distributed
together with application as well as links and URLs. Content of menu Help is defined in the Tahiti.xml.
There can be up to five user defined items.

Each item have to have name and associated command. Configuration values: Help.User.X.Name
- name, Help.User.X.Command - command to be executed. X is number in the interval <1, 5>.

Example 3.7. Help Customization
 <Item name="Help.User.1.Name" type="string" default="&Usage">
 <Description value=""/>
 </Item>
 <Item name="Help.User.1.Command" type="string"
 default="%TAHITI_BIN_PATH%\help\index.html">
 <Description value=""/>
 </Item>

Example will create in the menu "Help" item "Usage". If user selects this item file help/index.html
from the Tahiti directory will be open.

20

Chapter 4. Documents
Tahiti works primary with structured documents. Document in Tahiti is defined by document type,
unique identifier, collection of pages and attributes. Document attributes are defined as part of
document type definition. Document management system have to provide list of available document
types and their definitions. This list is stored on the client side inside repository in the file
cmserver2.xml or cmserver3.xml. File is usually downloaded when user connect to the system.
When application is offline last downloaded file is used.

Configuration files for document management system:

• cmserver2.xml - document types and attributes (legacy system)

• cmserver3.xml - document types definition (recommended version, used for new systems)

• presentation.xml - define views and document structure

All document types which can be displayed in the Tahiti have to be defined in the definition file.
Undefined document types cannot be displayed nor processed.

There is example of document hierarchy and types in the Tahiti distribution. It is definition of
documents in the accounting system.

1. Document Types
Each document stored in the document management system must have assigned document type.

Document type definition consist from several items:

• document type identification

• document name

• flag if new documents can be created

• class attributes - attributes associated with document type, these attributes are read-only

• document attributes - attributes associated with document instance

Document name should be clearly understandable for user. Prefix in document name is often used for
easier document type selection - e.g. "I0 - Invoices Out". Deprecated document types can be marked
with flag as non-creatable, such types are valid for viewing but not for creating new documents.

1.1. Class Attributes
Class attributes are attributes associated with document type which are read-only for document. This
attributes can be used for document classification, description, sorting etc.. Example of class attribute:
"Department" with values "Research", "Marketing", "Public Relations".

Class attribute is associated with document type and has defined value.

1.2. Document Attributes
Document attributes are created when document instance is created. New attribute is initialized with
empty value and is identified by name. Attribute definitions are in the document type definition file

Documents

21

(cmserver2.xml, cmserver3.xml). It is also possible to specify rules for attribute values - like
mask, attribute length. All attributes are transferred together with the document.

2. Format of cmserver2.xml
cmserver2.xml is obsolete format for exchanging document types. File format definition is part of the
Programmers Guide.

3. Format of cmserver3.xml
cmserver3.xml is recommended format for exchanging document types. File format definition is part
of the Programmers Guide.

4. Document Tree
Documents on the client side are organized in the tree. Structure of this tree is defined in the file
presentations.xml. Tree should allow users to have a good orientation in the documents and
quickly find required information. Tahiti support several document hierarchies and user can switch
between these views on the fly.

Document hierarchy is based on the attributes and their values. Attributes are defined in the
cmserver2.xmlor cmserver3.xml.

4.1. Document Attributes
There are several system attributes which are defined for each document in the tree.

Table 4.1. Document Attributes

Attribute Description
name Document type name
Document.id Document identifier, identifier is received from the server. New

document has empty value.
Document.id_internal Document identifier in the Tahiti. This value has runtime

specific value. Value can be used only to distinguish between
documents.

Document.version Document version. Value is received from the server
Document.serverVersion Document version. Second version value can be used for

internal server operation. Client should not depend on this
value

Document.readonly Document read-only flag.

• 0 - document has read/write access

• 1 - document is read-only
Document.type Identifier of document type. Document types are defined in the

cmserver3.xml. This attribute have all time valid value.
Document.modified Modification flag.

• 0 - not modified

• 1 - modified

Documents

22

Attribute Description
Task.name Name of connected task. This attribute can be used only in the

presentation to check if document is part of task.

4.2. Filters
It is possible to use one or more trees to display documents. Number of used trees can be adjusted
by setting variable DocTree.TreeCount. By default one tree will be used. Each tree can be used for
different kind of documents or use same view.

5. File Format of presentations.xml
File contain document tree definition and definition of views. One document hierarchy is called
"Presentation". File contain:

• Simple hierarchy - used for document type selection

• Dynamic views - used for document organization in the tree

5.1. Simple hierarchy
Simple hierarchy is used for document type selection and organization of document types.
Organization is based on the class attributes and their values.

Example 4.1. Example of simple hierarchy

<?xml version="1.0"?>
<ViewSettings>
 <BasicHierarchy>
 <HierarchyItem name="BOOK_KEEPING__AREA"/>
 </BasicHierarchy>
</ViewSettings>

Simple hierarchy definition is stored inside the tag <BasicHierarchy>. Tag contain list of
<HierarchyItem> with defined attribute name. This attribute have to contain class attribute value
used for sorting. Such attribute should be defined for all document types.

5.2. Views
Views are defined in section <Presentations> in the presentations.xml. View can be defined
one for all document types but also specialized for each one. View define levels in the tree and
displayed values.

Documents

23

Example 4.2. Tree example

Documents

24

Example 4.3. Example of presentations.xml

<?xml version="1.0"?>
<ViewSettings>
 <BasicHierarchy>
 <HierarchyItem name="BOOK_KEEPING__AREA"/>
 </BasicHierarchy>

 <Presentations>
 <Presentation name="Area/Year/Period">
 <Document type="Tahiti.rootDocument">
 <Level text="%BOOK_KEEPING__AREA%" cond="-"/>
 <Level text="%name%" cond="-"/>
 <Level text="%BUSINESS_YEAR%" cond="-"/>
 <Level text="%PERIOD%" cond="%PERIOD%"/>
 <Level text="%FILE_NUMBER%" cond="-"/>
 <ShortDesc text="%Page.number%"/>
 <LongDesc text="%Page.number%-%CISLO_JEDNACI%"/>
 <VersionDesc text="Version-%Document.version%"/>
 </Document>
 </Presentation>

 <Presentation name="Year/Period/Area">
 <Document type="Tahiti.rootDocument">
 <Level text="%BUSINESS_YEAR%" cond="-"/>
 <Level text="%PERIOD%" cond="%PERIOD%"/>
 <Level text="%BOOK_KEEPING__AREA%-%name%" cond="-"/>
 <Level text="%FILE_NUMBER%" cond="-"/>
 <ShortDesc text="%Page.number%"/>
 <LongDesc text="%Page.number%-%CISLO_JEDNACI%"/>
 <VersionDesc text="Version-%Document.version%"/>
 </Document>
 </Presentation>

 </Presentations>
</ViewSettings>

Views are defined inside tag <Presentations>. Each view is identified by name and defined inside tag
<Presentation>. Name is displayed in the user interface as the view identification. At least one tag
<Presentation> have to be defined.

5.3. View
View definition can be one for all document types or specialized only for some types. Common view
is defined inside tag <Document> with attribute type="Tahiti.rootDocument". Specialization of
view is done by setting attribute type to the document type.

Table 4.2. View definition
Tag name Description
Level Level definition, displayed in the tree. Level is displayed when associated

condition is not empty.
ShortDesc Page name, displayed in the tree
LongDesc Page name, displayed as the view name
VersionDesc Version name, displayed in the tree when more versions of one document are

downloaded.

Documents

25

5.4. Level
Tag <Level> defines one level in the tree. Text displayed in the tree is defined in the attribute text.
Condition if level will be displayed can be set in the attribute cond. Level is displayed if condition is
not empty. Order of nodes in the same level can be set int the attribute sort.

Example 4.4. Level displayed in all conditions

<Level text="%NUMBER%" cond="-"/>

Example 4.5. Level with sortBy attributes, displayed only if %NUMBER% is
not empty.

<Level text="Number - %NUMBER%" cond="%NUMBER%" sortBy="%NUMBER%"/>

It is also possible to define conditional level. Definition is on the next example.

Example 4.6. Conditional values

<Level>
 <Case text="%NUMBER%" cond="%NUMBER%"/>
 <Case text="%YEAR%-%PERIOD%" cond="%YEAR%%PERIOD%"/>
 <Case text="%YEAR%" cond="%YEAR%"/>
 <Case text="unknown"/>
</Level>

Tag <Case> contain same attributes as the <Level>, meaning is also same.

5.5. Filter
It is possible to possible only specific kind of documents in the view. Such approach can be useful to
distinguish between newly created documents and received documents from the information system.

Document types:

• new document

• received document

• task document

Table 4.3. Filter types
Filter type Description
0 Display all items
1 Display only new documents (created by user).
2 Display only existing documents (downloaded from the server).
3 Display only documents connected with the task. These documents have

to be process by user and committed back to the server.
4 Display existing documents and tasks. Combination of filter 2 and 3.
5 Display new documents and tasks. Combination of filer 1 and 3.
6 Display new documents existing documents which are not part of any task.

Combination of filer 1 and 2.

Used filter can be defined as part of presentation. There is optional parameter filter. If this
parameter is not set no filter is used (all items are visible).

Documents

26

Example 4.7. Filter

 <Presentation name="Area/Year - New documents"
 filter="1">

 </Presentation>

27

Chapter 5. Workflow
Workflow is concerned with providing the information required to support each step of the business
cycle. Tahiti can be used as client for such workflow system and do one step. For the current step,
there may be multiple actions associated with document processing. Such document can be send to
the Tahiti together with task definition and list of possible next steps.

Document can be sent to the Tahit in the read-only mode or with allowed modifications. Task can also
define additional attributes which will be associated with document when it is finished and send back
to the server in given state.

1. Native Format
Tasks description can be passed as standalone packet over communication channel or is usually
packed in one of the document attributes - Document.task.XML.Next paragraph describes XML
format of task and required attributes.

Example 5.1. Native Task Description (example)

<?xml version="1.0"?>
<DocumentTask id="task_15478" name="TaskName">
 <Attributes>
 <Attribute name="Description"
 value="Here is longer task explanation"/>
 <Attribute name="Priority" value="2007012816"/>
 <Attribute name="Creation" value="12-28-2006 14:30"/>
 <Attribute name="Expiration" value="01-28-2007"/>
 </Attributes>
 <Actions>
 <Action id="aid_1" name="Task Name"
 description="Choosing this state something might happen">
 <Attributes>
 <Attribute name="ActionResponse" value="Some value"/>
 </Attributes>
 </Action>
 <Actions>
</DocumentTask>

1.1. File Format
Root tag has name DocumentTask. There are two mandatory attributes id, name.

Table 5.1. <DocumentTask>

Attribute Required Description
id yes Task id, have to be unique identification of the task.
name yes Name of the Task. This value is directly displayed to the

user and should be localized. Value is also used for task
classification, it means that task of the same class should have
same name.

Tag Attributes contains Attribute definitions. There is fixed list of possible attributes. Only these
can be correctly interpreted by the Tahiti. Attribute is simple combination of name and value.

Workflow

28

Tag Actions contains list of possible next states for the task. Each states have to be defined in the
tag Action.

Table 5.2. <Action>

Attribute Required Description
id yes Action identificator. Used to distinguish between different

actions.
name yes Name of the next state (action). This name is displayed to the

user in the context menu. Value should be localized.
description no Action description, can be used to explain action and

consequences of this state.

Each Action can contain list of attributes which are set when user select this action. When user select
next state document is immediately send and user cannot change any attributes.

2. TPD Format
TPD is Tahiti Packed Document format. It is used as a container for one document or task from workflow
system. There is one xml file, attributes and binary files. All data are packed inside one file - it is
common zip file. There have to be at least one file called Pruvodka.xml which contain document,
task and data description. All other files have to be listed inside main xml file.

Note
This file format is currently obsolete and should not be used for new systems.

Example 5.2. Pruvodka.xml (document without task)

<?xml version="1.0"?>
<PaperBack Area="POJ_UDAL" SentByUser="mposmurn"
 DateSent="20031104" Deletable="Y"
 Status="1" Draft="cmserver.xml">
 <Ids>
 <ID Name="CPS_CPU" Value="2030000010"/>
 </Ids>
 <Docs>
 <Document Name="009-Dopis" Deletable="Y" Archivable="Y">
 <Ids />
 <Pages>
 <Page Name="dopis.tpkg"/>
 </Pages>
 </Document>
 </Docs>
</PaperBack>

Root tag is named PaperBack and have to have these attributes:

• Area - Area for compatibility with Golem system, should be empty for other systems

• SentByUser - user name for document processing, can be empty

• DataSent - date when document was generated, only informative value

• Deletable - one of value Y|N, Y - document can be delete, N - document cannot be delete

• Draft - reference to the document system, currently unused

Workflow

29

First format definition allowed to define more documents inside one file. It is no more possible and
only one document can be stored inside TPD. Identificators can be set in two places. Upper level can
contain three tags:

Table 5.3. TPD tags
Name Description
Ids Common identificators
Actions List of available document actions. Used for task definition.
Docs Documents definition. Currently can contain only one tag Document.

Document attributes:

• Name - document type name, this type have to be defined in the cmserver2.xml

• Deletable - currently unused tag, same meaning as Deletable on the main tag.

• Archivable - set if document can be stored in the archive, currently unused

Attributes are stored inside tag Ids, each combination of name, value in the tag ID. Attribute names
are defined in the connected information system.

2.1. Actions
Section Actions contain list of target document states. After processing document and associated
files user have to select one of the target states.

Example 5.3. Pruvodka.xml (Actions)
 <Actions>
 <Action id="S1" name="Send Invoice"/>
 <Action id="S2" name="Cancel Invoice"/>
 </Actions>

There are two defined actions in the example:

• Send Invoice

• Cancel Invoice

Each action have to have unique identifier and name. Name is displayed to the user. Identifier is used
for processing conditional attributes.

2.2. Conditional Attributes
Task is defined as list of actions, target document states. Given state is signaled to the server by
setting attribute value. Such attributes are called conditional attributes. Values of these attributes are
set when user select new state. Consequently is documented submitted to the server.

Example 5.4. Pruvodka.xml (Conditional Attributes)
 <Ids>
 <ID Name="NewDocState" Value="2030000010" OnAction="S1"/>
 <ID Name="NewDocState" Value="2030000021" OnAction="S2"/>
 </Ids>

Conditional attribute is almost similar as regular attribute. Only one difference is attribute called
OnAction. This attribute signals on which selected state should be value applied. Value is not used
if another state is selected.

30

Chapter 6. Scanning
Tahiti has wide support for scanning and supports desktop, mid-range and also hi-speed scanners.
It is important to carefully prepare scanning process. Such process have to be cost/time efective.
There are lot of different scenarios and Tahiti can be easily accomodated for such process. Scanning is
often directly connect not only with the document digitalization but also with document identification
- attaching document type, filling attributes and sending document to the document store.

Some of the possible scanning scenarios:

• scan documents and store on the local disk

• scan documents, attach attributes and send to the document store

• scan documents, read attributes from the barcode and send to the document store

• scan documents and send them to the Chapter 7, Document Assembly system.

Used scenario depends on the type of the scanned documents, amount of documents and other
conditions. It is also possible to use combination ot these methods.

Important part of the efective scanning process is to use predefined Section 1, “Scanning profiles”.
These profiles are stored in stand-alone xml file which can be distributed to the users. Profiles can be
also used to further automate document processing, set barcode recognition options and generation
of attributes.

1. Scanning profiles
Scanning profiles are defined in the xml file. This file is part of the configuration and is called
scans.xml. File has to be in one of the following locations:

• <tahiti-dir>/locale/<locale>/scans.xml

• <tahiti-dir>/configs/<domain>/scans.xml

• <repository>/<domain>/scans.xml

scans.xml can contain list of definitions common for all scanners and also individual list of definition
for given scanner. Following example contains two profiles common for all scanners. First profile is
called "ADF-gray-150" and second "Flat-Photo 9x13". Profile name should be short and easily
understandable. E.g. First part of name in the example says if automatic document feeder (ADF) is
used or flat scanner (Flat).

Scanning

31

Example 6.1. scans.xml

<?xml version="1.0"?>
<scan_formats>
 <scanner ProductName="*">
 <format id="1" name="ADF-gray-150"
 resolution="150" depth="8"
 feeder="1" autofeed="1"
 duplex="0"
 size_x="8.268" size_y="11.692"
 option="compression=30;" />
 <format id="2" name="Flat-Photo 9x13"
 resolution="300" depth="24"
 feeder="0" autofeed="0"
 duplex="0"
 size_y="4.2" size_x="5.8" />
 </scanner>
</scan_formats>

There have to be root tag called <scan_formats>. This contains one or more tags called <scanner>
each describing configuration for one scanner. Common configuration for all scanners is <scanner
ProductName="*"> and each configuration file heve to contain such entry. There can be used name
of the scanner instead of asterisk for individual scanner configuration.

Tag <scanner> contains list of predefined scanning profiles. Each of them is defined inside separate
tag <format>.

Table 6.1. scans.xml, tag format

Attribute Mandatory Description
id Y Identificator of the entry.
name Y Name of the profile - user visible
resolution Y Resolution in DPI
depth Y Bit-depth, can be 1, 8, 24.
threshold N Threshold (0-255), valid only for depth="1"
option N String describing options for used codec.
xfer N Transfer protocol - communication between Tahiti and

scanner. Only Twain experts should change this value.
Possible values: NATIVE, FILE, MEMORY.

xferFormat N Transfer format if xfer="FILE". Possible values: TIFF,
PICT, BMP, XBM, JFIF, FPX, TIFFMULTI, PNG, SPIFF,
EXIF

size_x N Page size in inches (width).
size_y N Page size in inches (height).
feeder N Flag is feeder shoould be used. 0 - not used, 1 - use

automatic feeder
duplex N Flag if use duplex scanning. O - no used, 1 - use duplex

scanning
pageFormat N Format of scanned page, can be use instead of size_x,

size_y. Available values: A3, A4, A5, B3, B4, B5, C3,
C4, C5, LETTER, USLEGAL. Some scanners do not allow
to set size_x and size_y and only page format can be
specified.

Scanning

32

Attribute Mandatory Description
transformation N Transformation function

2. Attributes generation
During scanning process various attributes can be generated and used in created documents.
Attribute generation is driven by configuration file scanattrs.xml.

Example 6.2. scanattrs.xml

<ScanAttributes>
 <Profile name="All">
 <Fixed id="Scan.Agency" name="Agentura" value="TA"/>
 <Fixed id="Scan.separator" name="separator" value=""/>
 <DocumentType id="Document.type" name="Dokument" shared="0"/>
 <Incremented id="CISLO_JEDNACI" name="CISLO_JEDNACI"
 prefix="" length="4" shared="0" incrOnValue="1"/>
 <Fixed id="HOSP_ROK" name="HOSP_ROK" value=""/>
 <Fixed id="OBDOBI" name="OBDOBI" value=""/>
 </Profile>
</ScanAttributes>

Attributes are generated in groups (all attributes from active group are inserted into newly created
document). Group is defined in section <Profile>. Every group has it's name and set of attribute
generators. During scanning at most one group can be active (user select active group by it's name
in Tahiti). Group can contain attribute generators of following types:

• Fixed

• DocumentType

• Incremented

2.1. Fixed
Fixed attribute generator produce constant value for every new document.

Table 6.2. Attributes

Attribute Name Description
id Attribute with this id will be added to created document.
name Name of attribute. This name is displayed in Tahiti.
value Value of attribute. Can be changed in Tahiti.

2.2. DocumentType
DocumentType attribute generator produce attribute which contains name of document type for every
new document. Value can be set in Tahiti where user can select document type from all document
types supported in Tahiti.

Table 6.3. Attributes

Attribute Name Description
id Attribute with this id will be added to created document.

Scanning

33

Attribute Name Description
name Name of attribute. This name is displayed in Tahiti.
shared 1-value of this attribute is shared across all groups. 0-value is local

for this group.

2.3. Incremented
Incremented attribute generator produce attribute which contains value created from prefix and
numerical part for every new document. Numerical part is incremented on given event type. Value is
incremented before inserted into document. Last used value is stored on disk for next use.

Table 6.4. Attributes

Attribute Name Description
id Attribute with this id will be added to created document.
name Name of attribute. This name is displayed in Tahiti.
prefix Prefix of value
length Length of value
incrOnValue Event type for increment numerical part of value. Numerical part

is incremented when value of attribute Scan.separator is same as
given value. Tahiti internally generate following values of attribute
Scan.separator: 1-separation page type-1, 2-separation page type-2

shared 1-value of this attribute is shared across all groups. 0-value is local
for this group.

It is possible to generate current date, user name as part of prefix. Variables usable in the prefix:

%y year (last 2 digits)

%m month (2 digits)

%d day (2 digits)

%H hours

%M minutes

%u username

prefix="cp-%y%m%d" - will generate string with prefix and current date, e.g. cp-080517

3. Empty page detection
During scanning process it is posible to detect and reject empty pages. It is very usefull when duplex
scan mode is used.

3.1. Attributes
Parameters are set in tahiti.xml and can be overwritten in domain.xml.

Table 6.5. Parameters driving detection of empty page.

Scan.EmptyPage.Soil.Level Detection of "interesting" pixels (pixels carrying
information). Pixel is interesting when its

Scanning

34

intensity differ from average value more
then Scan.EmptyPage.Soil.Level. Posible values
<0,255>. Default value 15.

Scan.EmptyPage.Soil.Ratio Factor of filling of page <0,10000>. 0 - no data on
page. Page is not empty when detected filling is
greater than Scan.EmptyPage.Soil.Ratio. Default
value - 90 (at least 0.9 % of page is filled)

Scan.EmptyPage.Side Size of strip of ignored part of image <0,1000>
per mille. Default value - 30 (ignore 3 % from each
margin).

Scan.EmptyPage.Type Type of detection algorithm 2-old, 3-new
(recomended).

35

Chapter 7. Document Assembly
Document Assembly is specialized user interface for batch processing. It is usually used for document
identification. It have to be used together with Damis Server backend - description of this server
component is in separate documentation.

1. Configuration
This function can be enabled in the Tahiti.xml. Main option is called Damis.Enable - switch on/
off the component.

Table 7.1. Document Assembly Configuration

Configuration Global Description
Damis.Enable Y Enable/disable component. 0 - disabled, 1 - enabled
Damis.Menu.Revoke.BadContent.AllowN Allow to revoke unreadable item and send it back for

re-scan. 0 - disabled, 1 - enabled
Damis.Menu.Revoke.UnableToProceed.AllowN Allow to revoke documents which use. 0 - disabled,

1 - enabled
Damis.Tree.Sort N Sort the tree by default. 0 - disabled, 1 - enabled
Damis.InputPlugins N List of input plugins used for first time when

document is opened. Detail description is in the
following chapter.

Damis.OnReceived.InputPluginsN List of plugins used when document is received.
Detail description is in the following chapter.

Damis.ExportPlugins N List of plugins used to export selected documents.

Note
Global configuration options cannot be overriden in domain specific configuration.

Configuration of connection is stored in file called damis.xml. This file can be placed in the domain
configuration directory or in the repository.

2. Damis.xml
File contains list of Damis servers. Tahiti can connect to these servers and process stored documents.
It is also possible to send new documents from the scanning to them (if allowed).

Document Assembly

36

Example 7.1. Example of Damis.xml

<?xml version="1.0" ?>
<DistrScanConfig>
 <Server name="server1" address="10.2.0.2" port="80"
 prefix="/DamisServer/Upload"
 menuScan="Send to Damis"
 uploadUniqueAttribute="FileNumber"
 uploadSplitAttribte="SplitId"
 uploadDomain="scan"
 />
 <Server name="server2" address="10.2.0.2" port="80"
 prefix="" interval="600" simulation="1" />
 <Server name="server3" address="10.2.0.2" port="80"
 prefix="/DamisServer/DamisServlet"
 interval="600"
 autoRequest="1"
 />
</DistrScanConfig>

Server is defined in the tag Server. Each server have to be identified by the name and address where
to connect.

Table 7.2. Damis.xml, tag Server

Attribute Mandatory Description
name Y Name of the server, used as symbolic name
address Y Server address
port Y Server port
prefix N Prefix where is Damis running on the server. If empty no

prefix is used.
interval N Interval in seconds to periodicly check if package is valid.

Common value is 300 or 600s (10 minutes). 0 - no periodical
checks.

simulation N Simulation of connection - used for development. 0 - not
used, 1 - connection is simulated

autoRequest N Automaticly request pending jobs. 0 - off, 1 - on
menuScan N Text which will be displayed in the scanning menu allowing

to send documents to the given Damis server. If this item is
not defined documents cannot be uploaded.

uploadOnlyActive N Set if only active version or all versions should be uploaded.
N - all versions will be uploaded, Y - only active version will
be uploaded

uploadDomain N Name of Damis domain used for upload. This have to be
name of existing and valid domain.

uploadUniqueAttribute N If menuScan is specified. uploadUniqueAttribute or
requestUniqueAttribute have to be s defined .This attribute
have to be unique for each document set. Documents have
to have this attribute.

requestUniqueAttribute N If menuScan is specified. uploadUniqueAttribute or
requestUniqueAttribute have to be s defined .This attribute
have to be unique for each document set. Attribute is issued
by server.

Document Assembly

37

Attribute Mandatory Description
uploadSplitAttribute N This is name of attribute used to split selected

batch with documents into smaller packages. Usually
uploadUniqueAttribute is used. If this attribute is not
specified unique attribute will be issued by server.

blockSize N Size of block for data transmition. When set batch is
uploaded to server in data blocks of size blockSize, when
communication fail Tahiti try to resend last block of data.
When doesn't set (attribute is missing) batch is uploaded in
one large block. Recomended value > 64000.

38

Chapter 8. Components
There is description of several components distributed together with the Tahiti. Components are used
to extend Tahiti with new functionality. It can be only small utility or bigger extensions like Explorer
integration.

1. Explorer
Explorer is domain specific component. It can be constructed using contract-
id: @lightcomp.com/tahiti/shell-files;1. It is visible in the list of domain as
Component.ShellFiles.

Components display embedded Explorer in the one window. It is possible drag&drop files from the
explorer to other Tahiti windows or to drop files to the Explorer. There is only one option called
Component.ShellFiles.Directory. This option allow to specify default directory when Tahiti is
started.

Embedded Explorer has one dialog-bar. This bar can be positioned some way as other bars.

2. Update
Update component allows to check if there is new version of the application and start update process.
Component internally use internally Invoker to do update. It means Invoker have to be first correctly
installed and configured. There are two options in the Tahiti.xml which have to be set correctly.

At the first component have to be enabled - have to be listed in the option
SharedComponents.XPCOM.Load.

Components

39

Example 8.1. Update - SharedComponents.XPCOM.Load

<Item name="SharedComponents.XPCOM.Load" type="string"
 default="
 @lightcomp.com/tahiti/update;1
 ">
 <Description value="Shared XPCOM components."/>
</Item>

The second option is called Component.Update.InvokerFile and is also placed in the
Tahiti.xml. It contains name of configuration file for the Invoker. Tahiti is using this file same way
as Invoker.exe. This file is typically called tahiti-update.xml.

Component also allows to start update process from the server. It can be done by sending Action
Object (.taobj) to the Tahiti. Such object can start check if there is new version. Action object can also
contain several options which can force Tahiti to use different XML file for the check. Description of
the Action Object and attributes is part of the DEP2 Specification.

40

Chapter 9. Input Plug-ins
Input Plug-ins are components which allows preprocessing of newly added files. These Plug-ins are
applied on the locally added files. They can be also applied on files received from the Damis.

Commonly used input plug-ins:

Basic Filter Limits types of added files as well as their size.

Photo Filter Allows to downscale, crop and limit size of photos. Filter
also make basic format conversion (e.g. BMP->TIFF).

Tiff Splitter Split multi-page TIFF files into several one page files.

Specialized Filters Various filters for conversion from proprietary formats to
HTML, PDF, etc...

Input Plug-ins are applied on several events:

• new file is added to the document

• file is added/received to the Document Assembly Tree

• file in the Document Assembly Tree is opened for first time

1. Configuration
Filters are configured in the Tahiti.xml. There are separate lists of filters used for each event.
List contains comma separated names of filters. Filters are applied in the order as they are in the
configuration.

Example 9.1. Example of Input Plug-ins Configuration

<Item name="DocTree.AddFile.InputPlugins" type="string"
 default="@lightcomp.com/tahiti.input_plugin.tiffsplitter;1,
 @lightcomp.com/tahiti.input_plugin.convertavn;1,
 @lightcomp.com/tahiti.input_plugin.photofilter;1,
 @lightcomp.com/tahiti.input_plugin.filter;1">
 <Description value=""/>
</Item>

This configuration will 4 filters on every newly added file to the tree. Possible Input Plug-ins
configurations:

Table 9.1. Configurations of Input Plug-ins

Configuration Name Context Usage
DocTree.AddFile.InputPlugins DocTree Filters used when new file is

added to the tree.
Damis.InputPlugins Damis Filters used when file is opened

for first time.
Damis.OnReceived.InputPlugins DamisOnReceived Filters used when file is

received from the server.

There is common configuration for all filters as well as specialized configuration for each filter usage
- called context. Each filter configuration contains word Default. Such configuration is used for

Input Plug-ins

41

all contexts. Context specific configuration has instead of name Default name of the context,
e.g.: InputPlugin.Filter.DocTree.Include.1, can be used to limit used files in the context
DocTree.

1.1. Damis.InputPlugins
Filters are applied when user open file for first time. There have to be attribute Damis.InputFilter
with 2nd bit on (e.g.: Damis.InputFilter=2).

1.2. Damis.OnReceived.InputPlugins
Filters are applied on received documents/files from the Damis server. There have to be attribute
Damis.InputFilter with lowest bit on. Filters are applied in separate thread and have to be without
user interface. Tiff Splitter is usually called here.

2. Basic Filter
Basic Filter is used for limiting size of files and also types. It is possible to limit maximum file size or
warn user when file is greater then recommended size.

Filter name: @lightcomp.com/tahiti.input_plugin.filter;1

Table 9.2. Basic filter configuration

Configuration Description
InputPlugin.Filter.Default.Include.1 List of allowed mime-types. If this list is empty all types are

allowed. Files with different types then in the list are not
allowed.

InputPlugin.Filter.Default.Include.2 List of recommended mime-types. If this list is non empty and
mime-type of the file is not in the list warning is displayed.

InputPlugin.Filter.Default.Exclude.1 List of forbidden types. If mime-type is in the list file is
forbidden.

InputPlugin.Filter.Default.Exclude.2 List of not recommended mime-types. If mime-type is in the
list user have to confirm that file is correct.

InputPlugin.Filter.Default.MaxSize.1 Maximum file size in bytes. Bigger files than this limit are not
allowed. When this value is 0 no limit is applied.

InputPlugin.Filter.Default.MaxSize.2 Maximum recommended size in bytes. User have to explicitly
confirm bigger files than the limit.

3. Photo Filter
Photo Filter is visual component used to achieve smaller files. Component also provides automatic
conversion of BMP files to optimized TIFF files.

Filter name: @lightcomp.com/tahiti.input_plugin.photofilter;1

Supported operations:

• downscale

• crop

• save as JPEG with lower quality

Input Plug-ins

42

Table 9.3. Photo filter configuration

Configuration Description
InputPlugin.PhotoFilter.Default.FileSizeMinimal file size to activate this filter.
InputPlugin.PhotoFilter.Default.Optimal.XOptimal image size in X-coordinate. 640 pixels is default size.
InputPlugin.PhotoFilter.Default.Optimal.YOptimal image size in Y-coordinate. 480 pixels is default size.
InputPlugin.PhotoFilter.Default.Size.WarnMaximal acceptable file size. File can pass through the filter

but warning is displayed.
InputPlugin.PhotoFilter.Default.Size.OkMaximal recommended size.

4. Tiff Splitter
Tiff Splitter is used to split multi-page Tiff file into several one-page TIFF files. This component is
without user interface and has no configuration.

Filter name: @lightcomp.com/tahiti.input_plugin.tiffsplitter;1

5. AVN Filter
AVN filter is used to convert output from software called AVN to HTML. Filter automatically detects file
encoding and format. This filter has no user interface and no configuration.

Filter name: @lightcomp.com/tahiti.input_plugin.convertavn;1

6. ChangeMimetype filter
ChangeMimetype filter is used to change Mimetype of outlook messages (files .msg). Filter is activated
when file with mimetype application/msoutlook or application/x-msoutlook is inserted. Mimetype is
changed to value obtained from configuration from variable named "Views.Mail.Outlook.MimeType"

Filter name: @lightcomp.com/tahiti/change_mimetype;1

43

Chapter 10. Add-ons for
Applications
Add-ons are components for external Applications which allows saving documents/data to the Tahiti.
There are several components for various applications and others can be created using Tahiti COM
objects. Detail description is part of the Tahiti SDK.

1. Internet Explorer
There is Internet Explorer extension called IEHelper.dll. This file have to be registered to be able
to save actual page to the Tahiti.

2. Lotus Notes
It is possible to save email from Lotus Notes directly to the Tahiti. There is new Tahiti specific item
in the menu Actions.

This add-on have to be installed in the Lotus Notes mail template on the server side. Usually file is
called mailX.ntf (e.g. mail7.ntf). There are just two parts to do this. The first is form and the
second is LotusScript that is called from an action. Steps to install add-ons:

1. Create new form called MimeConverter

2. Add new Agent "Export to Tahiti"

3. Distribute template to the clients

This add-on requires Tahiti 4.5.0.8 or later. Library OfficeLink3Proxy.dll have to be registered
during installation.

2.1. Form MimeConverter
This form has just two fields. The first is MimeRichTextField. This should be set to store contents as
HTML and MIME and is a RichTextField, which is also editable. The second field is called HtmlText
and is also an editable RichText field. Let it be known that this is a standard Lotus Notes Richtext
field. The form should be called MimeConvert and created in the mail file or mail file template.

Add-ons for Applications

44

This form is used internally by newly created Agent.

2.2. Agent "Export to Tahiti"
The LotusScript code is part of the Tahiti SDK, file doc\addons\lotus-notes\script.txt. This
code should be copied into an agent. Run it from the action menu and on all selected documents.

3. Microsoft Office
There are extensions for Excel, Outlook and Word. Each extension have to be registered and it will
automatically appear in the File menu of each application.

Table 10.1. List of Microsoft Office Add-ons

Application Dll
Excel ExcelAddin.dll

Outlook OutlookAddin.dll

Word WordAddin.dll

3.1. Troubleshooting
It is possible to log any event in the extension and use the log to resolve potential problems. Logging
can be set in the registry - if there is valid path to the log file component will log all events.

Path: HKCU\Software\LightComp\Tahiti\5.0

Table 10.2. List of Microsoft Office Add-ons Registry keys

Key Description
ExcelAddinLog Excel specific key, string value - path to the log file including file

name.
OutlookAddinLog Outlook specific key, string value - path to the log file including file

name.
WordAddinLog Word specific key, string value - path to the log file including file

name.

4. OpenOffice
There is extension (TahitiOOExt.oxt) for Writer, Calc, Draw and Impress. This extension allows to
save file directly to the Tahiti. Extension is common for all applications and can be installed automaticly
during Tahiti installation or manualy. Use OpenOffice extension dialog to install this extension manualy.
Check OpenOffice documentation for possible ways of installing extensions.

4.1. Registration
During installation from MSI if OpenOffice is installed extension will be automaticly registered. There is
utility RegisterOOExt.exe which simplifies registration of the extension. File will register extension
for all users (as shared extension) and can be used only when there is no running OpenOffice.

Note
RegisterOOExt calls internaly unopkg.com which is part of the OpenOffice.org installation.
Extension can be registered only if there is no running OpenOffice.

Add-ons for Applications

45

RegisterOOExt returns 0 if registration succeeded or OpenOffice installation was not found. Utility
returns error code 1 if registration of the extension fail. It means that OpenOffice is running or
insufficient rights.

	Tahiti
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Installation
	1. Software and hardware requirements
	1.1. Hardware
	1.2. Microsoft Windows
	1.3. Linux + Wine

	2. Distribution
	2.1. MSI Package
	2.2. ZIP file

	3. Custom Installation
	4. Running Tahiti
	4.1. Parameters
	4.2. Registration

	5. Local Repository
	5.1. Repository structure
	5.2. Local part

	6. File Formats
	6.1. Images, photos
	6.2. Word, Excel and OLE2 servers
	6.3. Text Files
	6.. HTML, PDF files
	6.5. Forms
	6.6. Packages, reports
	6.7. Email's
	6.8. OpenOffice

	Chapter 3. Configuration
	1. Domain
	1.1. XML format

	2. Repository
	3. Configuration inside Repository
	4. Profiles
	4.1. Default Profiles
	4.2. User-Defined Profiles
	4.3. Profile Reference
	4.3.1. TahitiProfiles
	4.3.2. Profile
	4.3.3. Name
	4.3.4. Description

	5. Logging
	6. Components
	7. Communication
	7.1. TAHITI_DEP2
	7.2. TAHITI_FTP_SEND
	7.3. TAHITI_SFTP_SEND

	8. Variables
	9. MIME types
	9.1. Freedesktop.org.xml
	9.2. MimeTypes.xml

	10. Help Customization

	Chapter 4. Documents
	1. Document Types
	1.1. Class Attributes
	1.2. Document Attributes

	2. Format of cmserver2.xml
	3. Format of cmserver3.xml
	4. Document Tree
	4.1. Document Attributes
	4.2. Filters

	5. File Format of presentations.xml
	5.1. Simple hierarchy
	5.2. Views
	5.3. View
	5.4. Level
	5.5. Filter

	Chapter 5. Workflow
	1. Native Format
	1.1. File Format

	2. TPD Format
	2.1. Actions
	2.2. Conditional Attributes

	Chapter 6. Scanning
	1. Scanning profiles
	2. Attributes generation
	2.1. Fixed
	2.2. DocumentType
	2.3. Incremented

	3. Empty page detection
	3.1. Attributes

	Chapter 7. Document Assembly
	1. Configuration
	2. Damis.xml

	Chapter 8. Components
	1. Explorer
	2. Update

	Chapter 9. Input Plug-ins
	1. Configuration
	1.1. Damis.InputPlugins
	1.2. Damis.OnReceived.InputPlugins

	2. Basic Filter
	3. Photo Filter
	4. Tiff Splitter
	5. AVN Filter
	6. ChangeMimetype filter

	Chapter 10. Add-ons for Applications
	1. Internet Explorer
	2. Lotus Notes
	2.1. Form MimeConverter
	2.2. Agent "Export to Tahiti"

	3. Microsoft Office
	3.1. Troubleshooting

	4. OpenOffice
	4.1. Registration

